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QUANTUM  COMPUTING:
New beads on the abacus

• Microanalytical Research Centre, School of Physics, University of
Melbourne

• National Nanofabrication Laboratory, School of Physics, University of
New South Wales

• Laser Physics Centre, Department of Physics, University of
Queensland

Monash Symposium 2001
Continental Hotel, Phillip Island

By David N. Jamieson, PhD, FAIP
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Classical Physics / Quantum Physics

Classical PhysicsClassical Physics
• Everyday experience
• Big objects we can look at
• Everything is smooth, continuous and sharp
• The scale of humans

Quantum PhysicsQuantum Physics
• Only in the last 100 years
• Objects as small as molecules, atoms and below
• Everything is indivisably packaged
• Things are blurry, move in jumps

+
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Classical computing: Moore’s Law

The remarkable development of computers
• Gordon Moore:

– in 1965 was Director of Fairchild Semiconductor
– made a 32 transistor integrated circuit one year

– 64 the next

• “The number of transistors (and hence computer power) doubles
every 18 months to two years”

• (Now making one transistor per ant per year - 1017 ants on Earth)

Motorola Power PC 620 Chip
7 million transistors 
(ancient relic)

Ancient relics
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The end of Moore’s law
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(Turn on sound)
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The end of Moore’s Law!
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• As electronic devices shrink, soon there will be just a few
electrons in each device

• Electric currents become erratic!
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Large device, current is
average of many

electrons

Small device, current
of one electron

Coil in LN2
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Classical Computers

Prospects for the future
• Cannot get indefinite speed increases by indefinite

miniaturisation
• Can get some advantages from parallel processors (more

than one computer chip working together)
• BUT: Some problems will always be difficult for classical

computers
• One class of these problems involves the factoring of

large numbers into prime factors
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Factorizing Large Numbers

• Essential for security of transactions over the internet (“RSA
security”), etc

• Example:
– 127 x 129 = ?  Easy! A few minutes

– ? X ? = 29083  Hard! Maybe an hour
– “hardness” of factorizing large numbers is the key to internet security

• Best supercomputers today can manage a 140 digit number
• What about a 500 digit number?  - Forget it!

REMEMBER: Fundamentally, we do not live in a classical world!
Enter the Quantum Computer
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The Quantum Computer

What can a quantum computer do?
• Quantum computers do the factorization problem 108 times

faster than conventional computers
• Searching through long lists
• Quantum encryption for secure information exchange
• Solving chemical and biological structures
• Modelling the real (quantum) world
• How is this done?
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The Quantum Computer

Use quantum particles as the bits in a quantum computer!
• Conventional computer memory states:

• Quantum computer memory states:

– A quantum computer memory can occupy all possible states at the one
time

– The solution to the problem appears in the final state of the computer
when the state of the qubits are read out

– What can we use as qubits?

1 0 1 1 1 0 0 1 1 0 ... binary bits

1 0 1 1 1 0 0 1 0 0 binary qubitsqubits0 1 0 0 0 1 1 0 1 1 ...
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Essential Quantum Mechanics

We need to get a feel for these non-classical attributes:
• The art of being in two places at the one time
• Occupying two states simultaneously
• Entanglement
• “Spooky action at a distance”*

*A. Einstein
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The Classical World

ScreenBarrier
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Input

Problem
Output
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The Classical World

ScreenBarrier
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The Classical World

ScreenBarrier
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The Quantum World

ScreenBarrier
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The Quantum World

ScreenBarrier
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The Quantum World

ScreenBarrier

Elslit1

elslit
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The Quantum World

ScreenBarrier

Youngs two slit
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The Quantum World

ScreenBarrier

Blocking one
hole gives the
classical result
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The Quantum World

ScreenBarrier
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The Quantum World

ScreenBarrier
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The Quantum World

ScreenBarrier

“Wavefunction
 collapse collapse”
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The Quantum World

ScreenBarrier

Centre for  Quantum Computer Technology

The Quantum World

First Result
• Can probe for holes in a screen with a large number of classicallarge number of classical

particlesparticles  (one particle for each point on the barrier)
• Can probe for holes in a barrier with one quantum particleone quantum particle!
• The “wave function” collapses to a particle when measured
• Quantum objects can do many things at once
• But there is more: Entanglement

Centre for  Quantum Computer Technology

Entanglement



Assoc. Prof. D.N. Jamieson

School of Physics,  Special Research Centre for Quantum Computer Technology,
University of Melbourne 5

Centre for  Quantum Computer Technology

Entanglement

Alice

Bob
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Entanglement

Alice
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Entanglement
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Entanglement

Alice

Bob
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Entanglement

Alice
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Entanglement
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Entanglement

Alice

Bob
B

ForwardsForwards
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Entanglement
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Entanglement
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Snap! Snap!
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Entanglement

Alice

Bob
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Entangled particles

Superimposed states
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Entanglement

Alice

Bob
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Entanglement

Alice

Bob

Snap!

Snap!

Entangled particles
(Spooky action at a distance)
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The Quantum World

Second Result
• Quantum objects can exist in two superimposed (entangled)two superimposed (entangled)

statesstates
• This superimposed state can collapsecollapse into a definite state upon

measurement
• Entangled particles can be created that retain the superimposed

state until measurement

• But how do we use this for quantum computing?
• We can use spin...
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Spin

Sub-atomic particles spinspin!  Look at the proton:
• A spinning charged particle acts like a tiny loop of electric

current
• This produces a magnetic field
• So the spinning particle is like a tiny bar magnet

+ ⇔ S

N

i
A

µo = iA

⇔
In here
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Spin and Magnetism

Spinning charged particles can be lined up with an external
magnetic field
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Spin and Magnetism

Spinning charged particles can be lined up with an external
magnetic field

NS

Alignment force vectors

Magnets in box

Centre for  Quantum Computer Technology

Spin and Magnetism

Spinning charged particles can be lined up with an external
magnetic field

NS

Alignment force vectors
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Spin and Magnetism

Space Quantisation
• Like many other properties, space itself isspace itself is

quantisedquantised
• The spinning particles cannot have arbitrary

orientations in space relative to the external
magnetic field

• The allowed orientations depend on the
amount of spin

• For protons and electrons, there are only twoonly two
allowedallowed orientations

• (This is a spin-halfspin-half particle)

+

+

Spin upSpin up

Spin downSpin down
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Spin and Magnetism

Spinning subatomic particles are quantum particles
• The spin orientation are two different quantum states
•• Before measurementBefore measurement, the spin orientation can be in two (spin

1/2) directions at the same time - superimposed statessuperimposed states
• Upon measurement, the spin is found to point in a definite

direction - wavefunctionwavefunction collapse collapse
•• Just what we need for a quantum computer!Just what we need for a quantum computer!
• To program this computer, we need energy
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Magnetic Resonance

Orientation and energy
• The spin down state is not at

equilibrium
• The magnetic field twists the spin

vector into alignment
• (Precise alignment is prevented by

space quantisation)

LowLow
energyenergy

HighHigh
energyenergy

+

+

Spin upSpin up

Spin downSpin down

Classical magnet
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Magnetic Resonance

Change orientations
• The high energy state will

spontaneously relax back to the low
energy state, releasing energy

+

LowLow
energyenergy

HighHigh
energyenergy
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Magnetic Resonance

+ LowLow
energyenergy

HighHigh
energyenergy

Change orientations
• The high energy state will

spontaneously relax back to the low
energy state, releasing energy
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Magnetic Resonance

+ LowLow
energyenergy

HighHigh
energyenergy

Change orientations
• The high energy state will

spontaneously relax back to the low
energy state, releasing energy

•• The low energy state can absorbThe low energy state can absorb
energy and flip to the high energyenergy and flip to the high energy
statestate
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Magnetic Resonance

LowLow
energyenergy

HighHigh
energyenergy+

Change orientations
• The high energy state will

spontaneously relax back to the low
energy state, releasing energy

•• The low energy state can absorbThe low energy state can absorb
energy and flip to the high energyenergy and flip to the high energy
statestate

• A radio frequency quantum of
radiation does this for protons in
typical magnetic fields is
42.58 MHz/Tesla
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Magnetic Resonance: Zeeman Effect

• Excited mercury vapour emits light owing to electrons jumping up and down
between energy levels

• A magnetic field placed around the vapour splits the energy levels and causes
small changes in the colour of the light

• These changes can be detected with a sensitive spectrometer

• Can also see the effect in sunspots...

PhotographSpectrometer
Zeeman Effect
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Zeeman effect in our labs

Electromagnet

Hg Lamp
Spectrometer No field

Strong field
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Magnetic Resonance

Assign qubits

+

+

Spin upSpin up

Spin downSpin down |0>

|1>

+
+ |10>

Classical
equivalents

0

1

(No classical
equivalent!

1 and 0
simultaneously!)
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The Kane Quantum Computer

We are now ready to commence construction:
• “A Silicon-based nuclear spin quantum computer” by B. E. Kane,

Nature, May 14, 1998
• Proposes a device that:

– encodes qubits as the orientation of spinning nuclei
– provides entanglement by means of electron clouds

– is constructed in silicon like conventional computers

• Will use a block of pure 28Si (spin-zero nucleus)
• Will use atoms of phosphorous (31P) to carry the spins
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Inner electron
cloud of

14 electrons
(spin 0)

The Kane Quantum Computer

+

Nucleus (spin 1/2)

• Close-up of  a phosphorous atom (not to scale)

Outer electron
cloud (spin 1/2)

-

The spin-orbit
interaction

Snapshot at 100 mK
(-273oC) 
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The Kane Quantum Computer

~200 Å
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The Kane Quantum Computer
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The Kane Quantum Computer
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The Kane Quantum Computer
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The Kane Quantum Computer

~200 Å
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“exchange coupling” mediated by J-Gates entangles spins

+

Adjust entanglement
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The Kane Quantum Computer

• Summary
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Fabrication Pathways

Fabrication strategies:
• (1) Nano-scale lithography:
• (2) Direct 31P ion implantation

Who is going to make this?
We are!
• Semiconductor National Nanofabrication (SNF) Laboratory, School of

Physics, University of New South Wales

• Microanalytical Research Centre, School of Physics, University of
Melbourne

• Laser Physics Centre, Department of Physics, University of Queensland

• Los Alamos National Laboratories, U.S.A.
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(1) Nano-scale Lithography

Step 1: Clean, flat silicon surface
Step 2: Deposit single 31P atoms
Step 3: Overgrowth by more silicon

Step 4: Deposit oxide layer
Step 5: Deposit metal contacts

20 nm
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Sub-300Å AuPd gates on  GaAs

(1) Nano-scale Lithography

• Electron beam lithography at the University of New South Wales

Centre for  Quantum Computer Technology

• 25K - 1500K Variable T
• 3-Chamber UHV

• Plus: Si-MBE, RHEED, LEED, Auger
Image of individual atoms on

silicon surface

(1) Nano-scale Lithography

• Scanning Tunneling Microscope with silicon crystal growth
capabilities at the UNSW

1nm
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(2) Alternative Fabrication Pathway

Difficulties:
• Must place 31P to a precision of a few billionths of a metre
• Having done that, need to come back and add metal electrodes

on the buried 31P atoms for the gates
• The 31P must not move about while doing this
An alternative strategy:
• Direct 31P ion implantation
• Can create templates for electrodes automatically
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1. Irradiate 2. Latent
damage

3. Etch

From: B.E. Fischer, Nucl. Instr. Meth. B54 (1991) 401.

Scale bars: 1 µm intervals

Heavy ion etch pit

Light ion etch pits

(2) Direct 31P ion implantation

• Single MeV heavy ions are used to
produce latent damage in plastic

• Etching in NaOH develops this
damage to produce pits

• Light ions produce smaller pits
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Ion tracks in space

• Cosmic rays struck
this Apollo 8 helmet
made from CR-39
plastic

• Etching in NaOH
revealed the tracks
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(2) Direct 31P ion implantation

Read-out state of
“qubits”

|1>, |1>, |0>

Etch latent damage
&

metallise

Resist layer

Si substrate

MeV 31P implant

Oxide layer
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Key Technologies; Imaging a single
interstitial P atom

A

A

B

B
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Is the human brain a quantum computer?

• Roger Penrose thinks so!
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• Superposition and entanglement enables massive parallel
processing

• (L qubits can store 2L numbers at once, classical only 1)
• Shor’s prime factorization algorithm (1994) relevant to

cryptography
• Grover’s exhaustive search algorithm (1996)

QuantumQuantum
ComputersComputersClassical

Computers
Factoring

Quantum Physics Problems
Exhaustive Search

1 0 1 1 1 0 0 1 0 0 binary qubitsqubits0 1 0 0 0 1 1 0 1 1 ...

Conclusion: Quantum Computer

    All Problems
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Conclusion: Quantum Computer

Not the next step, a whole new
journey*

*Prof Gerard Milburn, University of Queensland, one of our
collaborators on the quantum computer project.
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Further Reading

• Australian Centre for Quantum Computer Technology
http://www.ph.unimelb.edu.au/~dnj/src/srchome.html

• Oxford quantum computer group http://www.qubit.org
• The Feynman Processor, G. Milburn, Allen & Unwin, 1998
• Quantum Technology, G. Milburn, Allen & Unwin, 1996

• The Large, the Small and the Human Mind, R. Penrose, Cambridge, 1997
• Quantum Teleportation, A. Zeilinger, Scientific American, April 2000

• Physics and the Information Revolution, J. Birnbaum , R.S. Williams, Physics
Today, January 2000


