\relax \citation{1} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}} \citation{1} \citation{10} \citation{12} \citation{1} \citation{11} \@writefile{toc}{\contentsline {section}{\numberline {2}The effect of harmonics in attenuation measurement}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces \it The attenuation, $\mathop {\mathgroup \symoperators ln}\nolimits (I/I_{0})$, as a function of the thickness of aluminium absorber in the x-ray beam with a silicon monochromator set to 5 keV. $\circ $ - experimental results; solid line - curve of best fit corresponding to an admixture of $(1.09 \pm 0.02)\% $ third-order harmonic (15 keV). }}{3}} \newlabel{detuning1foilu}{{1}{3}} \citation{13} \citation{14} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces \it Effect of third-order harmonic contamination in attenuation measurements using Si(111) monochromator and three silicon sample thicknesses at 5 keV. All three measurements are consistent with a unique percentage of third-order harmonic contamination of about 0.06\%. }}{4}} \newlabel{fig:harattn}{{2}{4}} \@writefile{toc}{\contentsline {section}{\numberline {3}A three-foil experiment showing the effect of the harmonic fraction and its energy dependence}{4}} \citation{12} \citation{15} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces \it A harmonic component measurement with three well calibrated thicknesses provides a constant and reliable indicator of accuracy in attenuation measurements. Error bars are given by the thickness of the line. }}{5}} \newlabel{fig:simodelexpt}{{3}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces \it Energy variation of the fraction of harmonic contamination in the example chosen (at maximum detuning). }}{5}} \newlabel{fig:harpercent}{{4}{5}} \bibcite{1}{1} \bibcite{10}{2} \bibcite{11}{3} \bibcite{12}{4} \bibcite{13}{5} \bibcite{14}{6} \bibcite{15}{7} \@writefile{toc}{\contentsline {section}{\numberline {4}Acknowledgements}{6}}