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The backgammon-type multi-wire gas proportional counter (MWPC) enables the detection of X-ray

photons in two dimensions with a high degree of spatial linearity. An accurate simulation of the

detector geometry is developed to further optimise the spatial linearity achievable, by modelling the

ideal linear output and through mapping of the experimental residual signature. Three models are

presented, each achieving considerable improvements on key linearity measures over previous work,

and providing strong evidence for the dependence on charge cloud distribution. Linearity to micron

levels across 24 mm are demonstrated for MWPCs.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The science of spectroscopy requires precision instrumenta-
tion capable of highly linear and spatially resolved response.
X-ray spectroscopy additionally requires linearity with respect to
energy and intensity, and hence the ability to accurately resolve
spectra by energy is paramount.

Since the invention of the multi-wire gas proportional counter
(MWPC) by Charpak in 1968 [1], proportional counters have been
of fundamental importance not only to the fields of nuclear and
elementary particle physics, for which they were developed, but
to many other areas such as X-ray spectroscopy, protein crystal-
lography, and medicine [2–5]. The ability of such devices to
provide fundamental insight into so many fields of science,
eventually led to the award of the 1992 Nobel Prize in Physics to
Charpak, ‘for his invention and development of particle detectors,
in particular the multiwire proportional chamber’.1

At the University of Melbourne, high precision tests of
Quantum Electrodynamics (QED) have been undertaken using a
Johann-type curved crystal spectrometer coupled to an Electron
Beam Ion Trap (EBIT) [2,6]. The EBIT produces highly charged ions,
uncontaminated by other elements or charge states, and greatly
limits thermal and Doppler broadening effects through cooling
and confinement. Increased efficiency is achieved by curved
crystal focussing, and the use of gravity-referenced inclinometers
allows measurement of the diffraction angle to arcsecond
ll rights reserved.
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resolution. The backgammon-type MWPC is an integral part of
this system with advantages due to its large active detection area,
spatial linearity and high efficiency over a range of energies. By
contrast, other detector types have good resolution, but the large
range of X-ray energies leads to highly variable efficiencies, and
restricted detection area. Using this spectrometer system, experi-
mental measurements of atomic transition energies result in
fractional uncertainties in energy as low as ð224Þ � 10�5 [2].

Recently, multi-wire proportional counters have been reduced
in scale and embedded upon a solid matrix to yield multi-strip
detectors [7–9] and multilayer printed circuit boards [10]. These
latter designs use different physics and different cascade and
recombination processes, but fundamentally have the same
characteristics in terms of image formation and defect analysis,
and hence have very similar functionality regarding sources and
characterisation of non-linearities. A general discussion of some
key noise limits for these types of detectors has been made, which
certainly indicates some key limitations in potential statistical
information and hence resolution or linearity [11]. Recent
publications have observed very large spatial non-uniformities
which can relate to the subject of this investigation [12]. Further
new devices are being developed and linearity and resolution are
key parameters in their utility, often limited by either charge
cloud deposition or non-linearities as discussed [13,14]. However,
under ideal circumstances these limitations may be overcome, to
reveal intrinsic non-linearities due to limitations of board design
which simple charge division approaches do not predict.

A simulation has been developed which accurately describes
the internal geometry of the backgammon-type MWPC and has
assisted in the identification and minimisation of several sources
of non-linear detector output. Fig. 1 illustrates the high degree of
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Fig. 1. Fractional centroid position across the detector. Error bars are the standard

percentage errors in the determined centroid position. The solid lines are the

standard error envelope of the determined linear fit.

Fig. 2. Shows the backgammon cathode board (left) as divided into two capacitor

plates with 100mm channel separation. The anode wire configuration (right) is

shown configured for previous work with the detector [15].
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spatial linearity obtainable with this detector following these
recent developments [15]. Whilst dramatic improvements have
been made to linearity measures, unresolved structure still exists
within the residual from the linear fit as shown. The work herein
further improves the linearity achievable with the backgammon-
type MWPC, through an accurate modelling of the detector
to show ideal linear output, and through mapping of the
experimental residual signature.
2. Detector operation and modelling

2.1. Detector operation

In a MWPC, the source of electrons and ions is the fill gas,
which is ionised by an incoming X-ray, and separated by an
applied electric field. Through optimisation of parameters such as
gas composition, pressure and bias voltage, a counter can be
successfully operated in the proportional region whilst maximis-
ing spatial resolution.

The detector configuration considered herein is a development
on the ‘jeu-de-jacquet’ or backgammon-type X-ray detector [16],
and is described in detail elsewhere [15,17].Two dimensions of
position sensitivity are possible with the backgammon-type
MWPC, one (coarse) dimension of resolution from the resistive
charge distribution of electrons collected along the serpentine
anode wire, the other (higher resolution dimension) from the
capacitive charge distribution of positive ions collected on the
two plates of the backgammon board (Fig. 2). It is this
higher resolution dimension which is aligned with the plane of
dispersion when the detector is operated as part of the curved
crystal spectrometer.

The electronics and data acquisition system (DAQ) employed
in the operation of the backgammon-type MWPC are described in
full elsewhere [18].

2.2. Detector modelling

An accurate geometrical representation of the MWPC elements
was constructed and used as the basis for all simulations. The
model accurately reproduces the four output signals (i.e. the two
anode signals A and B, and two cathode signals C and D) of the
actual detector for an X-ray incident at any cartesian coordinate
ðx; yÞ within the proportional chamber, hence mapping
ðx; yÞ�!ðx0ðC;DÞ; y0ðA;BÞÞ.

Along the anode sensitive dimension, an event within the
active region of the detector drifts towards an anode segment,
locating the centroid of avalanche formation. As the resistance of
the wire is proportional to length, the distance to each end of the
anode wire is calculated, and the reciprocals used as the signals A

and B to determine the resistive charge division: y0 ¼ A=ðAþBÞ,
where y0At½0;1�.

In the cathode dimension, the model works by generating a
mesh of triangles to represent the geometry of the backgammon
board, described as the vertices of polygons. An incident X-ray
event is represented by a rectangular distribution of ions
surrounding the location of avalanche formation. The radius of
this distribution reflects changes in the footprint size. A projection
of each charge distribution is made onto the mesh of triangles,
and the projected area calculated, proportional to the charge
deposited on each side of the backgammon board (defining
signals C and D). The position along the cathode axis x0, is then
determined by capacitive charge division: x0 ¼ C=ðCþDÞ, where
x0A ½0;1�.

This model has allowed the determination of the cause of a
number of non-linear effects observed experimentally in previous
MWPC detector designs [19,20]; leading to major improvements
to detector configuration and operation [15]. In this current work,
the role of the detector simulation is to show ideal linear output,
leading to greater understanding of the residual signature,
and hence further improve the spatial linearity response of the
detector.
2.3. Detector linearity

An important attribute of the backgammon-type MWPC is its
spatial linearity over a large area. Prior to testing the spatial
linearity, a set of optimised operating conditions (gas composi-
tion, pressure and anode bias voltage) was determined. The
MWPC was filled with xenon–methane (10% methane in xenon) at
1.91 atm and operated with an anode bias voltage of 2400 V. To
test the spatial linearity, a MacScience rotating anode X-ray
source was employed to produce a copper spectrum, monochro-
mated to CuKb by a Si(1 1 1) channel-cut crystal. Four hundred
CuKb characteristic spectra were collected in 100mm steps along
the axis of cathode sensitivity across the 40 mm window of the
detector. Positioning of the MWPC was achieved by a 0:1mm
resolution linear stage, with typical on-axis accuracy of 3mm and
uni-directional repeatability of 0:7mm.

Each CuKb spectrum was fitted using the sum of two
Lorentzian profiles by a Levenberg–Marquardt least squares
algorithm, the centroid determined and compared with the
detector position on the linear stage. Fig. 1 illustrates the resulting
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spatial linearity with residual from a linear fit. Standard errors in
the determination of centroid position are shown as error bars,
while the standard error envelope of the linear fit is shown in
solid lines.
2.4. Linearity modelling

In order to model the ideal spatial linearity of the MWPC, 400
straight line X-ray distributions incident vertically across the
entire active region of the detector were simulated. A Levenberg–
Marquardt least squares algorithm was employed to perform a
linear fit and reproduce the ideal linear output of the detector for
a particular charge footprint.

Fig. 3 shows the fractional residuals for a typical circular
charge footprint for CuKb radiation. The top graph shows the
linear residual for both the experimental data and the model
(smooth line). The lower graph shows the experimental residual
from the model. Error bars are the standard percentage errors in
the determined centroid position. The solid lines are the standard
error envelope on the determined model fit.

Residuals (Fig. 3) reveal numerous regions across the detector
face that deviate from perfectly linear response. For example, the
extreme few millimetres at each side of the active detector region
demonstrate a strong trend away (in opposing directions) from a
straight line response. The detector model closely emulates the
experimental data in these regions, a strong implication of a
geometrical cause to the observed departures from linearity.
Fig. 3. Shows the fractional residuals for the optimised circular charge footprint wi

experimental data and the model (smooth line). The lower graph shows the experime

determined centroid position. The solid lines are the standard error envelope on the d
2.5. Geometrical analysis

An initial analytical study of the circular ion cloud projection
onto the backgammon board was performed to gain an under-
standing of the geometrical and physical cause of the observed
residual structure. The projected area of the charge cloud
determines the cathode signals, hence the charge collected is
expected to contain a functional form similar to that for the area
(A) of a chord segment:

Aðr; yÞ ¼
r2

2
½y�siny� ð1Þ

where r is the circle radius and y the central angle. The centre of
avalanche formation and hence centre of each ion cloud
projection is necessarily in line with an anode wire segment. A
general analytical function for each cathode signal then becomes
a sum of positive and negative chord areas for each backgammon
segment projected onto, summed over each anode wire.

The derivative with respect to y of the chord area elements
(Eq. (2)) highlights the sensitivity of the geometrical model to the
centre of an ion cloud passing over the interface between
backgammon segments (due to the ½1�cosy� dependence). For
small ion cloud radii, the design of the MWPC is not adversely
effected by this sensitivity as each anode wire intersects the
boundary of the backgammon segments only at its midpoint.
However, as an ion cloud radius becomes appreciably larger than
the pitch of the backgammon teeth, the number of chords forming
central angles approaching p radians also increases. This cloud
radius is of course energy dependant, but is slowly varying.
th radius of about 8 mm. The top graph shows the linear residual for both the

ntal residual from the model. Error bars are the standard percentage errors in the

etermined model fit.
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The resulting effect to detector response can be the departures
from ideal linearity observed both in experiment and simulation

@Aðr; yÞ
@y

¼
r2

2
½1�cosy�: ð2Þ

3. Analysis of models and measures of linearity

The reduced chi-squared of the experimental data fitted with
each detector model is a key indicator of model performance:

w2
r ¼

XNy

i ¼ 1

wiðyi�fiÞ
2

Ny�Np
ð3Þ

where yi are the experimental values to be fitted, fi the model
values, wi are the weighting values determined by counting
statistics as 1=

ffiffiffiffi
N
p

, Ny the number of values, and Np the number of
fitting function parameters.

Fig. 4 shows the w2
r of the model fit to the experimental data

over the parameter space of circular ion cloud radius. The dashed
line shows the w2

r for the best linear fit to the experimental data
(w2

r ¼ 3:08), therefore any point below this threshold represents
an improvement in fit of the data and the minimum w2

r the best
set of parameters. These ideal model outputs can then be
subtracted from the data to form a residual, which is then fit
with a linear function by a Levenberg–Marquardt least squares
algorithm, and measures of spatial linearity may then be
ascertained.

The fractional uncertainty on the fitted gradient (Dm=m) and
offset (Dc=c) are useful measures of spatial linearity describing
the diagonal elements of the uncertainty in the determined
fit parameters. This measure does not discriminate between
the models presented but instead yields an indication of potential
consistency of results for the interpreted or determined scaling.
Fig. 4. Shows the w2
r of the circle model fit to the experimental data over the paramete

cloud with an apparent radius of about 8 mm.
For these optimised models, Dm=m¼ 0:0196% and Dc=c¼

0:00547%.
The ‘percentage maximum error of the fit’ is a good indication

that, subject to noise and statistics, a broad feature or wide
separation of peaks (of several pixels or resolution elements) can
be resolved or determined to very high accuracy. The standard
error of each fit is then,

s2
f ¼

X

i;j

covarðpi; pjÞw2
r

@f

@pi

@f

@pj
ð4Þ

where i; jA ½1 . . .Np�, pi and pj are the fitting parameters, f is the
fitting function, and covar ðpi; pjÞ is the covariance matrix of the
fitted parameters. The percentage maximum error of the fit then
is simply the maximum of sf expressed as a percentage of the
full detector range including the inactive region (40 mm). With
better statistics, or perhaps longer counting times, the random
noise component of this is reduced arbitrarily, and the resulting
measure looks at the intrinsic significance of non-linearity
excursions from a well-defined line.

The ‘average deviation from fit’ is defined as the mean
deviation of the detected centroid positions from the linear fit.
This is a useful measure of spatial linearity, looking at the typical
point-wise excursions over the operational area and esti-
mating the error of a single channel position determination.
This measure, however, is affected by limited statistics, but in the
absence of statistical limits will provide a strong measure of
point-wise departures from linearity.

We define a ‘regional differential non-linearity’ as the mean of
the experimental residual from the model after box-car filtering
over 11 points (1.1 mm). In this way much of the random
experimental noise is suppressed, leaving a good representation
of the typical excursion of the detector from the fit. It provides a
very useful measure of the scatter present within a local region
across the full active detection range.
r space of ion cloud radius. The arrow highlights the minimum w2
r (2.06) for an ion
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Fig. 5. Shows the means by which an elliptical charge cloud footprint was generated by the scaling of the cathode board dimensions within the model.
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The ‘maximum fractional excursion’ is usually due to a few
outliers rather than from the full range linearity, but is a good
estimate of the worst possible performance. It is calculated as the
maximum deviation of a detected position from the fit. Under
many circumstances this is a poor estimate, often based on a few
points with low statistic, or in a situation where some additional
systematic effect caused a defective readout. Often repeating the
point a couple of times proves that these points were, for
example, 3 or 4 standard deviation random excursions which do
not critically affect the detector (linearity) performance.

3.1. Circular model

The first detector model studied was that of a uniform (or top-
hat) distribution of charge within a circle, and radii from 0.004 to
20 mm. Fig. 4 shows the w2

r of the circular model fit to the
experimental data over the parameter space of ion cloud radius. It
is clear from this graph that there are six regions over the range of
ion cloud radii that the model yields an improvement over the
linear fit. The minimum w2

r (2.06) is highlighted by an arrow and a
dotted line, thus the best circle model was for an ion cloud with
an apparent radius of about 8 mm (Fig. 3).

Closer inspection of the fractional residuals for this best circle
model (Fig. 3) is important. Within the range of �11 to �2 mm the
experimental residual from the model is centred about 0 with
only statistical fluctuations remaining. The regions �2 to 3 mm
and 329 mm of the model yield consistently positive and negative
residuals, respectively. The outermost millimetre at each end of
the active detection region demonstrates a limitation of the
particular model output—here the ideal response is beginning to
curve in the opposite direction from the experimental residual.

3.2. Elliptical model

It is expected that to first order a cloud will be circular, but as it
sees different fields in orthogonal directions this could easily yield
an elliptical shape. Hence the detector model was then extended
to simulate a uniform distribution of charge within an ellipse
through the introduction of an eccentricity parameter (e). The
eccentricity of the charge cloud describes the semi-major radius
(rs�majorFalong the axis of cathode sensitivity) as a percentage of
the semi-minor radius (rs-minorFalong the anode sensitive
dimension), rs-major ¼ ers-minor.

Definition of an elliptical ion cloud in this way allowed for its
simple implementation in the model by a scaling of the
backgammon board dimensions as shown in Fig. 5. Fig. 5(a)
shows a single circular charge cloud of the desired semi-major
radius. Through scaling the anode sensitive dimension by the
eccentricity parameter before projection of the charge cloud
(Fig. 5(b)) the resulting charge footprint is equivalent to an ellipse
of the desired dimensions (Fig. 5(c)).

The elliptical model was implemented for eccentricities of
10–500% and semi-major radii of 0.004–20 mm, however, many of
the resulting simulations were discarded on the basis of being
physically unreasonable. Fig. 6 shows the w2

r of the remaining
ellipse models fit to the experimental data. The red (solid) line
shown indicates the w2

r for the linear fit, such that any point below
this line is an improvement over a straight line fit. As opposed to
the six regions of improvement found for the circular model, with
the elliptical model it is clear that the addition of the eccentricity
parameter has lead to a much broader range of models with a low
w2

r .
The best ellipse model (w2

r ¼ 1:94) was for an ion cloud with an
eccentricity of 60%, semi-major radius of about 6.1 mm, and semi-
minor radius of about 10.2 mm (Fig. 7). A study of the
experimental residual from the model shows a structure similar
in features to that of the best circle model, with a few important
improvements. The outermost millimetre at each end of the
model output now follows the experimental data much more
closely, so that the detector ranges between �12 and �2 mm and
9 to 12 mm are dominated only by statistical noise. The regions
between �2 and 3 mm and 3 to 9 mm of the model still, however,
demonstrate consistently positive and negative residuals.
3.3. Gaussian model

The circular and elliptical models discussed have been based
on uniform distributions of charge. The detector simulation was
modified to allow for a Gaussian distribution of charge onto the
cathode board following each ionisation event. To achieve this, an
approximation was made through the weighted sum of a range of
circular ion clouds of uniform distribution, centred on the same
coordinates, and parameterised by the Gaussian half-width-at-
half-maximum (HWHM). The weighting of each circle was
determined by the volume of an annulus formed within a solid
Gaussian defined by the HWHM. This is an efficient and accurate
partitional representation of a true Gaussian, to arbitrary level of
approximation.

The number of circular elements used to make up each
Gaussian distribution ranged from three to 101. Fig. 8 shows the
w2

r of an 11-element Gaussian model fit to the experimental data
over the parameter space of ion cloud HWHM. The red (dashed)
line shown indicates the w2

r for the linear fit, such that any
point below this line is an improvement over a straight line fit.
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Fig. 6. Shows the w2
r of the model fit to the experimental data over the parameter space of ion cloud semi-major radius. Eccentricities of 10–500% are shown. The arrow

highlights the minimum w2
r (1.94) for an elliptical ion cloud.

Fig. 7. Shows the fractional residuals for the best elliptical model (w2
r ¼ 1:94) with an eccentricity of 60%, semi-major radius of about 6.1 mm, and semi-minor radius of

about 10.2 mm. The top graph shows the linear residual for both the experimental data and the model (smooth line). The lower graph shows the experimental residual

from the model. Error bars are the standard percentage errors in the determined centroid position. The solid lines are the standard error envelope on the determined

model fit.
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The range in size over which the elements were chosen was also
an important parameter of the model. Distributions within
radii of 50–150% HWHM were used for the models shown in
Figs. 8 and 9.
The best model constructed for a Gaussian distribution
(w2

r ¼ 1:95) was for an 11-element Gaussian with approximately
2.6 mm HWHM and elements in the range of ½50%; . . .150%��
HWHM. Fig. 9 shows the fractional residuals for this model.
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Fig. 8. Shows the w2
r of an 11-element Gaussian model fit to the experimental data over the parameter space of ion cloud HWHM. Elements were in the range of

½50%; . . . ;150%� �HWHM. The arrow highlights the minimum w2
r (1.95) for this model.

Fig. 9. Shows the fractional residuals for an 11-element Gaussian charge distribution with a HWHM of approximately 2.6 mm. The top graph shows the linear residual for

both the experimental data and the model. The lower graph shows the experimental residual from the model (smooth line). Error bars are the standard percentage errors in

the determined centroid position. The solid lines are the standard error envelope on the determined model fit.
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This optimum has a structure not observed in earlier models. The
oscillatory structure is due to the various elements of the
distribution causing areas of non-ideal response (Section 2.5). As
the number of elements within a distribution was increased, the
Gaussian model output tended to that of the circular model.
As such, the residual structure in Fig. 9 was dominated by
an artifact of the finite element approximation used to generate
the model. While this mapped the experimental data quite
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closely, the result was not particularly robust nor physically
insightful.
4. Results

For each of the three types of models presented herein (i.e.
circular, elliptical and Gaussian model types), an expression for
the linearity of the detector was determined, and found to be very
close to that of an ideal linear fit, with x0A ½0;1�:

x0 ¼ ð0:019974� 10-6
ÞxðmmÞþð0:50573� 10�5

Þ: ð5Þ

The linearity measures discussed in Section 3 were computed
for each of these optimised models. As discussed above, the fitted
gradient ðDm=mÞ and offset ðDc=cÞ are consistent and well-defined
showing that the linear functional form is independent of the
charge cloud modelling. Results are summarised in Table 1. The
Gaussian, circle, and ellipse models show dramatic improvements
over the simpler linear model for all (other) linearity measures.

Table 1 shows that the elliptical model best fits the experi-
mental data collected, with a w2

r of only 1.94. This model also
exhibits the lowest percentage maximum error of fit at 0.00787%
(or 3:2mm) indicating that features spread across the active region
of the detector can be resolved to a high level of accuracy.

Average deviations from fit were calculated to be only 0.0565%
and 0.0566% for the Gaussian and ellipse models, respectively.
This yields a good indication of the typical error on any single
position determination within the detector. As the non-linearity
of the translation stage is an order of magnitude better than the
experimental results herein, a mechanical cause of the observed
non-linearity is safely ignored.

The ellipse model exhibited the best regional differential non-
linearity of only 0.0313% an improvement of 35% over the linear
model. Likewise, the circle and Gaussian models showed
improvements 430%. While a typical point-wise excursion (from
statistical noise or random effects) might deviate by 0.001 in x0,
the deviation of a local region is much smoother and much of the
structure is well-explained.

Finally, the maximum fractional excursion was minimised for
the circle model at 0.272%. Whilst this measure is due to several
outliers in the experimental data, which can skew the optimisa-
tion of the respective models and the final fit, the demonstrated
improvement of 18% indicates that a significant component of the
previous deviation was due to an inadequate model (i.e. the need
for a representation of the charge cloud).

We note that the spatial range of the detector modelled does
affect final optimisation and parametrisation. Modelling the
central 20 mm instead of the full active 24 mm detector length
yields a very similar slope and offset, and hence fitting
uncertainty, but reduces the w2

r by about 10%, and similarly
reduces the regional differential non-linearity and maximum
Table 1
Summary of linearity measures by optimised model, fitted across the full active

24 mm detector length; values in bold are the best result for each linearity

measure.

Measure Linear Gaussian Circle Ellipse

w2
r

3.075 1.948 2.055 1.938

% Maximum error of fit 0.009916 0.007892 0.008106 0.007871
Maximum error of fit (mm) 3.966 3.157 3.243 3.148
% Regional differential non-

linearity

0.0484 0.0332 0.0336 0.0313

% Average deviation from fit 0.0670 0.0565 0.0583 0.0566

% Maximum fractional excursion 0.3307 0.2903 0.2720 0.2831
fractional excursion by approximately 10%. Since the improve-
ment is moderately uniform, the results of the full fitting and
linearity measures are presented.
5. Conclusion

We have investigated the experimental linear residual of the
backgammon-type MWPC, and shown the requirement for a
representation of the charge cloud in modelling the ideal linear
output of the detector. This paper does not theoretically prove a
particular charge cloud shape, nor the ideal uniformity of that
particular shape. It remains possible, for example, that key cloud
radii might vary across a charge amplification device due to non-
uniformities in construction; or that the radius might change with
subtle changes in voltage or design; or that particular edge-effects
might distort such a cloud shape.

Rather, it demonstrates that there is strong evidence for an
approximately circular charge cloud distribution which is
approximately uniform in a good typical implementation, and
that this does indeed explain key systematic effects in the
linearity function. This result thereby improves the potential
determination of local structure in backgammon detectors,
MWPCs and related charge amplification devices. Further, this
paper demonstrates that highly accurate determination of posi-
tion is possible with this detector type, and other related types,
even if the resolution per se is not so high as e.g. CCD or other
detectors. Of course, this accuracy is attained only with good
statistics, and with appropriate modelling of detector response
function.
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