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ABSTRACT: The complex dielectric function and associated energy loss spectrum of a
condensed matter system is a fundamental material parameter that determines both the
optical and electronic scattering behavior of the medium. The common representation
of the electron energy loss function (ELF) is interpreted as the susceptibility of a system
to a single- or bulk-electron (plasmon) excitation at a given energy and momentum and
is commonly derived as a summation of noninteracting free-electron resonances with
forms constrained by adherence to some externally determined optical standard. This
work introduces a new causally constrained momentum-dependent broadening theory,
permitting a more physical representation of optical and electronic resonances that
agrees more closely with both optical attenuation and electron scattering data. We
demonstrate how the momentum dependence of excitation resonances may be
constrained uniquely by utilizing a coupled-plasmon model, in which high-energy
excitations are able to relax into lower-energy excitations within the medium. This
enables a robust and fully self-consistent theory with no free or fitted parameters that reveals additional physical insight not
present in previous work. The new developments are applied to the scattering behavior of solid molybdenum and aluminum. We
find that plasmon and single-electron lifetimes are significantly affected by the presence of alternate excitation channels and show
for molybdenum that agreement with high-precision electron inelastic mean free path data is dramatically improved for energies
above 20 eV.

The low-energy inelastic scattering behavior of electrons in
a medium is of fundamental and critical importance to

many spectroscopies and microscopies used in modern
materials analysis. Electron energy loss spectroscopy (EELS),1

low-energy electron diffraction,2 X-ray absorption spectrosco-
py,3 and electron microscopy4 all demand detailed knowledge
of electron scattering, inelastic mean free paths (IMFPs), and
the dielectric response of the medium being probed. This work
aims to incorporate new physical processes into a causally
constrained model of the dielectric response of materials in
order to improve our understanding and quantification of
critical material properties.
We are interested in developing theory to calculate the

electron IMFP in the low-energy region (below ∼100 eV),
where recent experimental results have demonstrated deficien-
cies in the established literature.5,6 It has become apparent that
existing models of the dielectric response of materials to low-
energy electrons systematically overestimate the electron IMFP.
Recent theoretical works suggest that this is due to either a
poor account of single- and bulk-electron excitation lifetime
broadening7 or a lack of consideration for exchange and
correlation effects in the dielectric theory of solids.8 It is
plausible that both of these effects contribute to the
discrepancy, but without properly constrained theoretical
models, it is not possible to definitively assess the contribution
of each.
Attempts to resolve the discrepancy using variations in

lifetime broadening parameters for optical resonances have
shown that this approach may yield good agreement for

energies higher than 50 eV. Recent work of this nature by Da et
al. achieved particularly strong success with a model using many
fitted resonance terms possessing both positive and negative
oscillator strengths.9 They were subsequently able to achieve
excellent agreement with experimental results across all
energies studied by using an additional empirical reduction
parameter. Although successful, such an approach is ultimately
insufficient, however, as it lacks a well-defined physical
justification and utilizes an unconstrained representation of
optical resonances that are constructed using a potentially
overcomplete basis set.
This work focuses instead on the momentum dependence of

the lifetime broadening of single-electron and bulk-electron
(plasmon) excitations, developing an earlier discussion on the
extension of the widely used optical data model for calculations
of the electron energy loss function (ELF) and electron
IMFP.10 We will demonstrate how a model may be developed
to incorporate these effects in both a physical and uniquely
constrained way. These developments will be applied to the test
cases of elemental molybdenum and aluminum, allowing us to
probe their effects for a free-electron-like material with a single
dominant resonance peak and a material with more complex
band structure and many optical resonances. In the case of
molybdenum, our improvements result in dramatic improve-
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ment in the agreement with recent high-precision experimental
results.
We begin with a review of the basic features of the optical

data model. This approach has been developed over some
decades from the original works of Penn11 and Tung et al.,12

and a version of this model is used in the work of Tanuma et
al., who have constructed the most comprehensive and widely
cited tabulations of IMFPs in the current literature.13 The
model deals with the determination of the electron ELF, which
is the principal determinant of the electron IMFP λ following
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The term Im[−1/(ε(q,ω)) is the electron ELF and may be
interpreted as a relative probability of an excitation of energy
ℏω and momentum ℏq propagating in the medium.14 The
terms a0 and m are the Bohr radius and electron mass, while the
Fermi energy, EF, is defined relative to the bottom of the
conduction band. The limits of the momentum integral are
given by
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Within this model, the problem of calculating the electron
IMFP is reduced to that of calculating the momentum-
dependent dielectric function ε(q,ω). This problem has been
widely studied but has been solved satisfactorily only for the
case of a nearly free-electron gas (FEG). In this instance, one
may use the theory of Lindhard to define the resonant behavior
of a lossless FEG15 or the theory of Mermin, an extension to
the Lindhard theory, for a more physical description inclusive
of excitation lifetime broadening.16 The commonly used
classical Drude model is not considered here as it lacks any
well-defined dispersion relation for low-energy electron
excitations.17

The FEG theory must be extended to describe the behavior
of a real solid with complex band structure. We therefore utilize
the relatively greater availability of information regarding the
optical limit of the dielectric function ε(0,ω). The optical
dielectric function and optical ELF, Im[−1/(ε(0,ω))], may be
obtained directly using optical transmission or reflection
measurements18,19 or inferred from EELS or reflection
EELS.20 Recent developments have also enabled calculations
of the optical ELF using density functional theory (DFT).7,17

The optical data model posits that the momentum-dependent
ELF of a solid may then be determined by constructing a sum
of FEG-type resonances (Lindhard, Mermin, or otherwise) that
match the optical behavior of the material, that is, the ELF in
the limit ℏq → 0. Mathematically, we can write this condition
as
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where Im[−1/(εFEG(0,ω;ωp=ωi)) is the optical loss function
for a FEG. This loss function will consist of a single resonance
peak, situated in the optical limit at the plasma frequency ωp =
ωi. The relative amplitudes Ai are defined by the match to the
externally determined optical spectrum. If Lindhard-type
functions are used to define the FEG, then each component

resonance will be a delta function in the optical limit, and the Ai
terms are uniquely defined
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where Δω is the spacing between sampled points on the
externally determined optical spectrum. If we then sum such
component resonances using their full momentum-dependent
forms, we arrive at a momentum-dependent ELF for the solid

∑
ε ω ε ω ω ω

− = −
=

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥q

A
q

Im
1

( , )
Im

1
( , ; )i

i
iFEG p (5)

This can then be integrated following eq 1 to evaluate the
electron IMFP. The use of Lindhard terms to construct the
electron ELF has been a common practice because it is
uniquely constrained via eq 4 and because it can be used to
match any optical dielectric function precisely. The Lindhard
model is, however, unphysical due to its lack of broadening to
account for the lifetime of the excitations that presents. This
limitation led to the development of the Mermin function,16

which expands on the Lindhard function in such a manner that
it retains adherence to the causal constraints of the Thomas−
Reiche−Kuhn and Kramers−Kronig sum rules.21 The Mermin
dielectric function, εM(q,ω,γ), is defined in relation to the
Lindhard dielectric function, εL(q,ω), by the expression
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where γ is the broadening associated with the finite lifetime of a
resonant excitation. The use of Mermin terms in the optical
data model has become popular in recent times,9,22,23 and in
particular, it has been used to demonstrate that the observed
discrepancies between theoretical and experimental IMFPs may
be reduced significantly by the inclusion of plasmon broadening
terms γi.

24 These Mermin-based optical data models are,
however, still subject to a number of limitations in terms of
both implementation and physicality.
The first such limitation is due to the matching of externally

determined optical loss data via eq 3. Because the Mermin
functions generally possess a finite width, one cannot always
guarantee a precise match to an arbitrary optical loss spectrum.
The negative oscillator approach of Da et al. provides a way to
overcome this limitation,9 but in doing so, it generates a large
number of unconstrained resonance terms, which in turn
exacerbate another problem with the Mermin representation
that of uniqueness.
Any Mermin-type fit to an optical ELF has many free

parameters the number of oscillators, the plasma frequency
ωi of each, their relative amplitudes Ai, and their widths γi.
Therefore, it is easy to see that one may readily generate many
quite different sets of parameters that all closely represent the
observed or nominal optical loss spectrum. These different
representations lead to very different electron ELFs and
therefore very different conclusions regarding the electron
IMFP. The more Mermin terms used in order to refine the fit,
the worse this problem can become.
Mermin fitting approaches also suffer from physical

limitations. For instance, the representation of the electron
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oscillators usually involves the use of a single broadening
parameter γi for each excitation. In reality, the lifetime of an
excitation is dependent not only on its energy but on its
momentum, and therefore, the use of a single parameter for this
purpose is insufficient.
Some early works attempted to quantify the momentum

dependence of plasmon broadening but were strongly
hampered by the inability to properly describe the full
excitation spectrum for non-free-electron-like materials.25,26

More modern works have investigated the problem from a
phenomenological point of view27 and demonstrated some
success with the use of fitted relationships for the momentum
dependence of excitation lifetimes.28 A robust physical
determination of lifetimes has been lacking, however, and
recent investigations using first-principles DFT have shown
success only in very limited regions of energy and momenta29,30

An even more severe problem associated with optical data
modeling is the universally used initial assumption that the solid
is a sum of noninteracting FEG resonance terms. Clearly, all of
the electrons in a solid can interact, and therefore, each
excitation channel must be affected by all of the other
resonances of the material.
In light of these limitations, we present a new model based

on a self-consistent Mermin representation with momentum-
dependent broadening widths γi(q). The first step, as in all
optical data models, is to determine the spectrum at ℏq = 0. In
order to solve the problems of uniqueness and precise spectrum
matching, we define the following condition for all excitations i

γ =
→

qlim ( ) 0
q i0 (7)

This reduces the optical behavior to the equivalent of a
Lindhard model, which is uniquely constrained by eq 4. While
the use of Lindhard terms is not physical in general, we note
that this reduction to Lindhard behavior is permissible as the
optical limit as defined is an idealization that does not apply to
any real physical system. In fact, we will show that such a
reduction is even predicted by a self-consistent dielectric model.
The next problem is to specify the form of the values for

γi(q). In our preliminary investigation prior to this work,10 the
Kramers−Kronig and Thomas−Reiche−Kuhn sum rules were
used to constrain momentum-dependent broadening values
within a FEG toy model. When using Mermin functions,
however, these sum rules are automatically satisfied for all
broadening values. Further, a Mermin model where γi(q) = 0,∀i
always satisfies the sum rule given by eq 12 of10
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These properties are highly desirable for our model because the
momentum-dependent lifetime broadening of excitations must
be determined from the dielectric behavior of the material itself.
Such an approach solves not only the problem of specifying
γi(q) but also the problem of accounting for interactions
between excitation channels. We have seen that for a free
particle, an IMFP may be evaluated using eq 1. We may readily
use the same formalism to derive an effective IMFP for a bound
particle, provided that we assign appropriate limits to the
momentum integral. In this case, we use the standard

relationship (ℏ2q2/2m) = ℏω to generalize the expression for
new momentum limits q*± to
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Given an effective IMFP, we can then infer a lifetime τ for
the excitation by dividing the IMFP by the group velocity
(dωq/dq). This derivative is evaluated based on the dispersion
relation predicted by the Mermin formalism at the relevant
point of energy and momentum. The lifetime τ is then inversely
proportional to the broadening parameter γ(ω,q) = ℏ/τ, which
we therefore define at any given combination of energy and
momentum
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The width γi(q) for a particular oscillator i is then related to
this generalized broadening function following

γ γ ω=q q( ) ( , )i q (11)

with the special case at the optical limit of γi(0) = γ(ωi,0).
In the first instance, calculations are performed using a

combination of eqs 1, 5, and 9, building an electron ELF using
Lindhard-type FEG functions to approximate the behavior of
the solid. This computation is equivalent to the longstanding
full Penn algorithm (FPA),11 which forms the basis of several
tabulations currently in the literature.13 Values for γi(q) are
then obtained used eq 10 to define broadening widths for
Mermin functions at all energies and momenta, and a new ELF
is built using these functions. The process is then repeated until
the electron ELF is converged and therefore self-consistent.
Mathematically, we may define this iterative formalism by
representing the inverse IMFP as a sum of broadened
oscillators with relative strengths Ai
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This equation can then be generalized by substituting an
integral form of eq 4 to obtain
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where the broadening values γi(q)N are given in terms of the
IMFP λ(E)N by comparison with eq 10. Θ is the Heaviside step
function, and δ is a positive infinitesimal. Successive iterations
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of eq 13 generate a coupled-plasmon model of increasing order,
with convergence to a self-consistent result typically achieved
by N > 4.
We have applied this approach to calculating the electron

ELFs and free-electron IMFPs in elemental molybdenum and
aluminum. Molybdenum is an ideal test case due to the recent
experimental interest in the material and its characteristic
strongly defined optical resonance peaks.24 Aluminum, by
contrast, is often considered a free-electron-like material,
exhibiting a single dominant optical resonance at around 14.5
eV. Figure 1 shows the generalized broadening function γ(ω,q)

for all combinations of energy and momentum for both
molybdenum (upper pane) and aluminum (lower pane), up to
ℏω = 120 eV and ℏq = 12 Å−1.
This figure represents the lifetime broadening associated with

both free- and bound-state electrons in the solid and has a
number of striking physical characteristics. First, in the optical
limit, the function always reduces to zero. This is partly due to
the vanishing integration range of the ELF given by eq 9 and
partly because the group velocity approaches zero for
momentum-free excitations (i.e., standing waves). Therefore,
the model predicts that a Lindhard-type formalism (i.e., a
lossless formalism) is both valid and required when ℏq = 0 and
that this would be so regardless of how the optical broadening
widths were initially defined.

The second striking feature is that a clear trench is formed
along a particular path with increasing energy and momentum
and that this closely follows the dispersion relation of a free
particle. Despite differences in the magnitudes of the
broadening for Mo and Al, the trench appears for both
materials along the same characteristic path. It makes intuitive
sense that an energetic bound particle will have a shorter
lifetime due to its strong interaction with the potential of the
solid, but it is a compelling property of this model that such a
physical insight is directly manifested and material-independ-
ent. This feature may be considered a direct analogue of the
well-known Bethe ridge, which corresponds to a peak in the
electron ELF following the dispersion relation of a free particle
at high energies. Unlike the Bethe ridge, however, this feature is
well-defined across all energies and therefore may more readily
be used as a test of the physicality of the model ELF. The
current model appears to be the first to robustly predict such a
feature for the general behavior of the scattering material, in
particular contrast to recent density functional investigations
where radically differing dispersion behavior was predicted for
individual excitations.30

The particularly high level of broadening observed for
excitations with high energy but low momentum is also
important as these are excitations that typically exist beyond the

Figure 1. Plasmon and single-electron excitation broadening spectrum
for elemental molybdenum and aluminum. Values from this surface are
used to determine the lifetime broadening to be applied to the electron
ELF, ensuring a physical and self-consistent representation of plasmon
coupling in the material.

Figure 2. Electron ELF of elemental molybdenum. (A) is calculated
using a lossless Lindhard-type model, while (B) utilizes a self-
consistent coupled-plasmon model (eq 13) to incorporate excitation
broadening following values from Figure 1. In a qualitatively similar
fashion to previous Mermin-type modeling,24 the broadened ELF has
much less structure at high momenta but predicts far greater scattering
losses at low energies, leading to a lower electron IMFP.
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range of integration used when determining the IMFP of a free
particle. This means that although in a lossless Lindhard
formalism such excitations would play no part, in the current
model, they are valid excitation channels into which the free
electron may deposit energy and thus reduce the calculated
IMFP.
The detailed behavior of individual resonances is best

illustrated by the full energy- and momentum-dependent ELF
for molybdenum, which we present in Figure 2. The blue
surface is determined using a lossless Lindhard model, while the
red mesh uses the current self-consistent model with
momentum-dependent broadening as described. In both cases
plotted and in our analysis of aluminum, the optical limit of the
spectrum is determined externally by DFT calculations.24,31

The Lindhard model clearly retains the optical loss structure
at higher momentum values, while the self-consistent Mermin
spectrum quickly establishes a broad range of potential
excitations that persist at very low energies. This leads to a
significant increase in the scattering and thus a decrease in the
IMFP of low-energy electrons without a significant impact on
high-energy electrons. In Figure 3, we show cross sections of
the electron ELF for molybdenum at three different values of
the momentum transfer ℏq.

This figure shows one of the most important physical
properties of the model, that excitations at higher energies have
a greater level of broadening as the energy from these
resonances may be coupled into lower-energy excitations. We
therefore call this a coupled-plasmon model as it intrinsically
accounts for the interaction between different plasmon
excitations in the medium and relaxes the longstanding
approximation that a solid is a collection of noninteracting
nearly FEGs. Our implementation of excitation broadening,
which is energy- and momentum-dependent, self-consistent,
uniquely constrained, and sensitive to the band structure of the
absorbing material, subsequently has a dramatic effect on the
electron IMFP. This is plotted for both molybdenum and
aluminum in Figure 4. In the case of molybdenum, we compare
the new coupled-plasmon model with a lossless Lindhard
model, our previous fit-based Mermin model,24 and the recent
high-precision measurement from X-ray absorption spectros-
copy.6 For aluminum, we demonstrate the relative significance
of including plasmon-coupled broadening for a free-electron-
like material with a single dominant resonance peak.
The improved theoretical modeling leads to a dramatic

reduction in the IMFP for molybdenum and a substantial
improvement in the agreement with the experimental result.
Although prior improvements have been shown using Mermin
functions,9 including our recent fit-based Mermin model
(dotted green curve in Figure 4),24 this is the first time that
such an outcome has been achieved with a constrained,
comprehensively physical model. This result demonstrates the
validity of the coupled-plasmon approach and the value of

Figure 3. ELF of molybdenum at momentum transfer ℏq equal to (A)
0, (B) 0.75, and (C) 1.5 Å−1. In the optical limit, both Lindhard and
coupled-plasmon models coincide with externally determined optical
loss data. At higher momenta, the coupled-plasmon model leads to
increased broadening as higher-energy excitations couple into lower-
energy excitations.

Figure 4. Theoretical and experimental determinations of the electron
IMFP for molybdenum and aluminum. The solid black curve with
uncertainties shows a recent high-precision Mo measurement from
XAFS,6 while the green dotted curve uses a more traditional fit-based
Mermin modeling. The blue dotted−dashed curves show results from
a lossless Lindhard-type representation of the electron ELF, while the
red dashed curves use the current coupled-plasmon model defined by
eq 13. The implementation of self-consistent excitation broadening has
a dramatic effect on the IMFP for molybdenum due to its broad loss
spectrum and many excitation channels, while the reduction for
aluminum is far more modest due to its singly resonant loss structure.
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implementation of a properly physical understanding of
interaction between different excitation channels within a
well-defined condensed matter system.
The reduction for aluminum is also significant at very low

energies, but the result converges far more rapidly to the
lossless modeling, which has well-established accuracy at higher
energies. This is due to the optical loss spectrum of aluminum
consisting of only a single peak at 14.5 eV, meaning that this
resonance may only couple into itself at lower-energy states,
and there are no significant peaks to broaden at higher energies.
Consequently, we demonstrate that a lossless modeling is
largely sufficient for aluminum for energies above around 40
eV.
This work aids strongly in the development of IMFP theory

in terms of evaluating the relative importance of physical
deficiencies in previous modeling. We have been able to
confirm for molybdenum that further effects of exchange and
correlation are relatively minor above around 50 eV, but of
course, they may be dominant for low electron energies. We
have shown further that the solid-state band structure of the
material is a critical determinant of the significance of excitation
broadening in the low-energy regime. The work enables for the
first time an approach that includes excitation lifetimes without
the need for arbitrary fitting algorithms, meaning that the
inclusion of broadening parameters can become standard
practice for IMFP determinations. This represents a significant
step forward in the understanding of electron transport in
general condensed matter systems and is directly and
immediately applicable to all current low-energy electron
spectroscopies and microscopies.
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