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A B S T R A C T

We review new self-consistent models of inelastic electron scattering in condensed matter systems for accurate
calculations of low-energy electron inelastic mean free paths (IMFPs) for XAFS and low energy diffraction. The
accuracy of theoretical determinations of the electron IMFP at low energies is one of the key limiting factors in
current XAFS modeling and Monte Carlo transport. Recent breakthroughs in XAFS analysis show that there exist
significant discrepancies between theoretical and experimental IMFP values, and that this can significantly
impact upon extraction of other key structural parameters from both XANES and XAFS. Resolution of these
discrepancies is required to validate experimental studies of material structures, and is particularly relevant to
the characterization of small molecules and organometallic systems for which tabulated electron scattering data
is often sparse or highly uncertain.

Novel models implement plasmon coupling mechanisms for the first time, in addition to causally-constrained
lifetime broadening and high-precision density functional theory, and enables dramatic improvements in the
agreement with recent high profile IMFP measurements. We discuss a theoretical approach for IMFP determi-
nation linking the optical dielectric function and energy loss spectrum of a material with its electron scattering
properties and characteristic plasmon excitations. We review models inclusive of plasmon coupling, allowing us
to move beyond the longstanding statistical approximation and explicitly demonstrate the effects of band
structure on the detailed behaviour of bulk electron excitations in a solid or small molecule. This interrogates the
optical response of the material, which we obtain using density functional theory. We find that new develop-
ments dramatically improve agreement with experimental electron scattering results in the low-energy region
(30 eV → 200 eV) where plasmon excitations are dominant. Corresponding improvements are therefore made in
Low Energy Electron Transport, LEEM, theoretical XAFS spectra and detector modelling.

1. Background for low energy electron properties

The origins of quantum oscillators and resonance scattering and
losses is found in Drude and Einstein models extended to Debye and
Drude-Sommerfeld models with Fermi-Dirac statistics for the electron
by 1928 [1–4]. Much of the understanding of scattering, Compton
scattering and inelastic scattering has also been based upon a free
electron gas model [5,6]. Perhaps surprisingly, extensions of the Drude-
Sommerfeld model into angle-dependent inelastic scattering and q-
space extensions are still active and prevalent in 2018.

Major and dramatic advances were made [7,8] over the intervening
decades, still based on a free electron gas model. Meanwhile of course
the understanding of the solid state, regular arrays of atoms, conductors
and dielectrics developed apace. In particular the idea of a plasmon as a

plasma oscillation and propagation developed, with the observation of
plasmons by energy losses in units of ℏωp when electrons pass through
thin metallic films [9].

Much of this core understanding is presented in classical texts
[10–12]. As early as 1982, Levine and Louie attempted to modify the
Drude-Sommerfeld basis away from the free electron gas model to ac-
count for the band gap in semiconductors [13].

The major breakthrough in the understanding and modelling of
electron properties came with Penn in 1987 [14] which was then able
to link up arbitrary solid state structure and behaviour from experi-
mental or theoretical optical limit data to evaluate electron and
plasmon inelastic scattering from band theory. In the same period there
has been development of a plethora of density functional theories
(DFTs), effective band theories and plasmon theories with many
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contributions from many authors. More recently we have seen the
discrepancies of inelastic mean free path theory at low energies [15–17]
leading to the development and insight of coupled plasmon theory, a
key topic of this paper and review [18,19].

The Drude-Sommerfeld model [4] permitted independent oscillators
(electrons), as the implementation of Fermi-Dirac statistics of a free
electron gas with a set i of eigenvalues of possible resonant energies of
absorption ωi with a degeneracy or number of oscillators Ni and an
effective mass m with a damping term (lifetime) γi to yield the dielectric
function or permittivity ε as a function of frequency ω, with the oscil-
lators providing a shift from the permittivity in free space ε0:
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While Ni was interpreted as the number of electrons, it is a simple
matter to reinterpret this for plasmons as the fractional charge of a
collective plasma (electron) wave. However, whereas the permittivity
of a photon is well-represented by this functional, for an electron wave
this is the ‘optical limit’ i.e. for forward scattering or with a change of
wavevector =q 0. For elastic or inelastic scattering for the transport of
a plasmon or electron wave, this functional needs to be extended into q-
space. The simplest is the quadratic extension into q-space [20]:
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The other popular approach is the quartic extension into q-space:
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Where =β 1/3 is recommended by some as the low-q limit of
Thomas-Fermi theory [21–23], also used in major recent compilations
[24,25]. Conversely, the coefficient =β 3/5 has been strongly proposed
[26]. These limits, while popular in modern computations and tabula-
tions, have particular limitations from causality, experimental data
[15,16] and the nature of the Bethe Ridge [27]. The fundamental
question, which we attempt to survey here, is what is the nature of the
interaction of electrons with matter?

2. Inelastic mean free path (IMFP) theory - optical data models

The optical data model deals with the determination of the electron
energy loss function (ELF), which is the principal determinant of the
electron IMFP λ following
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( , ) is the electron ELF, and may be interpreted as a
relative probability of an excitation of energy ℏω and momentum ℏq
propagating in the medium [28]. The terms a0 and m are the Bohr ra-
dius and electron mass, while the Fermi energy, EF, is defined relative to
the bottom of the conduction band. The limits of the momentum in-
tegral are given by
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Within this model the problem of calculating the electron IMFP, the
mean distance between successive inelastic collisions measured along
the electron’s trajectory, is reduced to that of calculating the mo-
mentum-dependent dielectric function ε(q, ω). This problem has been
widely studied but has been solved satisfactorily only for the case of a
nearly free-electron gas (FEG). In this instance one may use the theory
of Lindhard to define the resonant behaviour of a lossless FEG [7], or
the theory of Mermin for a more physical description inclusive of ex-
citation lifetime broadening [8]. The commonly used Drude model

lacks any well-defined dispersion relation for low-energy electron ex-
citations [20].

To calculate the IMFP we must determine the dielectric function or
the ELF. The optical limit of the dielectric function ε(0, ω) and the
optical ELF, ⎡⎣ ⎤⎦

−Im ,ε ω
1

(0, ) may be obtained directly using optical trans-
mission or reflection measurements [29,30], or inferred from electron
energy loss spectroscopy (EELS) or reflection EELS [31–36]. Recent
developments have also enabled calculations of the optical ELF using
density functional theory (DFT) [18,20]. The optical data model asserts
that the momentum-dependent ELF of a solid may then be determined
by constructing a sum of FEG type resonances (Lindhard, Mermin, or
otherwise) that match the optical behaviour of the material - i.e. the
ELF in the limit ℏq→ 0. Mathematically we can write this condition as
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is the optical loss function for a free-electron

gas. This loss function will consist of a single resonance peak, situated
in the optical limit at the plasma frequency =ω ωp i. The relative am-
plitudes Ai are defined by the match to the externally determined op-
tical spectrum. If Lindhard-type functions are used to define the FEG,
then each component resonance will be a delta function in the optical
limit, and the Ai terms are uniquely defined:
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where Δω is the spacing between sampled points on the externally-
determined optical spectrum. If we then sum such component re-
sonances using their full momentum-dependent forms, we arrive at a
momentum-dependent ELF for the solid:
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In this way we can extend the FEG theory to describe the behaviour
of a real solid with complex band structure. If =ε ε ,FEG L so that each
resonance in the optical limit is a Lindhard resonance, a delta function,
then the extension into q-space is given uniquely and exactly by: [7]
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with the Fermi velocity vF and Fermi wave vector qF defined in terms of
the Fermi energy EF and the Fermi frequency ωF. This is much more
complex than the approximate q-space extensions of Eqs. (2) and (3).
The use of Lindhard terms to construct the electron ELF has become a
common practice, because it is uniquely constrained via Eq. (7) and
because it can be used to match any optical dielectric function pre-
cisely. To understand this note that any spectral function in the optical
limit is uniquely decomposed into an infinite sum of Dirac delta func-
tions and amplitudes (i.e. source terms for the Lindhard functions), so
that this prescription is always possible and always unique. The great
success of the 1980s was the development by Penn of the Penn algo-
rithm to define the IMFP explicitly and uniquely in terms of the optical
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data limit, the representation of these as a sum of delta-function Lind-
hard functions, and the consequent extension into q-space [14].
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This is an archetypal example of a Partial Pole Model - the optical
limit spectrum is represented as an infinite sum of delta functions for
each =ω ωp , and each of these is propagated as an independent pole (or
Lindhard function) into q-space. It is called a Partial Pole Model be-
cause the optical limit resonance, i.e. the corresponding plasmon in the
optical limit, may not have zero width and therefore the pole or
plasmon would be subdivided into a set of partial poles for each
plasmon resonance. Indeed the dielectric function for a photon (the
optical limit) has lifetimes of excited states in pure absorption following
the quantum mechanical decay process, so it is sensible to define this
approach as a partial pole approach.

This approach has been developed over some decades from the
original works of Penn [14] and Tung et al. [37]. A version of this
model is used in the work of Tanuma et al., who have constructed the
most comprehensive and widely-cited tabulations of IMFPs in the cur-
rent literature [25].

This can then be integrated following (4) to evaluate the electron
IMFP. The Lindhard model is, however, unphysical due to its lack of
broadening to account for the lifetime of the excitations it represents.
Similarly, the Penn algorithm fails because it is lossless: plasmons have
finite lifetimes and hence IMFPs too!

This limitation of the Lindhard function led to the development of
the Mermin function [8], which expands on the Lindhard function to
include a lifetime broadening parameter γ in such a manner that it
retains adherence to the causal constraints of the Thomas-Reiche-Kuhn
and Kramers-Kronig sum-rules [38]. The Mermin dielectric function,
εM(q, ω, γ), is defined in relation to the Lindhard dielectric function,
εL(q, ω), by
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where γ is the broadening associated with the finite lifetime of a re-
sonant excitation. The use of Mermin terms in the optical data model
has become popular only in recent times [17,39,40], and has been used
to demonstrate that the observed discrepancies between theoretical and
experimental IMFPs may be reduced significantly by the inclusion of
plasmon broadening terms γi [41]. These Mermin-based optical data
models are, however, still subject to a number of limitations in terms of
both implementation and physicality.

In particular, Mermin-based optical data models may be Partial Pole
models (with delta functional in the optical limit, like the Lindhard
functions, so that the optical limit data is still uniquely defined as a sum
of delta functions), or Many Pole models (with resonance widths in the
optical limit being non-zero and often attempting to mimic the widths
observed in the optical data or in the theoretical computation).
Unfortunately, there has been no unique or robust way to calculate γ,
only empirical fitting algorithms. A key set of assumptions in the past
literature, which we think have now been disproven, include the hy-
pothesis =γ i q ω γ( , , ) , constant, ∀i, q, ω. Clearly different upper levels
or excited plasmons will have different lifetimes. The hypothesis

=γ i q ω γ( , , ) ,i constant for each i, ∀q, ω, has also been rejected, as the
lifetime should certainly depend upon the electron momenta and vector
in a band structure. And similarly, the hypothesis =γ i q ω γ ω( , , ) ( ),i
constant for each i, ω, ∀q is also improbable.

Whilst the Penn algorithm can be applied uniquely and universally
to any optical data, it has been recognised that one of the key problems

of any free electron gas model including the Lindhard and by extension
the Penn, is the solid state structure due to band theory and in parti-
cular the band gap Eg for any semiconductor, for example. For this
purpose the Levine-Louie function was developed [13], which is a
partial pole model defined in terms of lossless Lindhard functions, as:
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This is a truncated Lindhard function with no possible absorptive
component for plasmons within the band gap; however, if the only
plasmons are above the band gap then this modification and the cor-
responding transform do nothing, and one might as well start with the
Lindhard functions but only allow non-zero components above the band
gap energy. Because each component is a delta-function, the implied
lifetime of the plasmon remains infinite and non-causal. In a similar
vein, a more appropriate functional for conductors has been proposed
by Tung et al. to address deficiencies of the free electron gas approach
relative to solid state band structure, following a Drude approach but
with a double summation over conduction electrons and plasmons

=ω( 0)i and over valence and related resonances (ωi≠ 0) [37,42]. This
is a many-pole model. More recently there has been a development of
tabulations based upon these principles and perhaps a question of the
separation of plasmon excitations and interband transitions. An ex-
ample of the difference in the energy loss spectrum using typical
Mermin parameters for a single resonance compared with a partial pole
sum of Lindhard terms is given in Fig. 1, with the Mermin result shown
in 3D in Fig. 2.

The understanding of the electron IMFP is critical for spectroscopies
that involve primary or secondary electron probes, including e.g.
Electron Energy Loss Spectroscopy (EELS), Electron Diffraction,
Electron Microscopy (LEEM, PEEM, ...), and overlayer experiments. The
importance of low-energy IMFP for electron particle transport, detector
modelling, EPES, XPS and related spectroscopies has been emphasised
[43–45].

3. Applications to X-ray absorption and measurements via the X-
ray extended range technique

X-ray Absorption Spectroscopy (XAS) yields a secondary low energy
photoelectron which produces an interference wave with the returning
elastically scattered electron, and thus directly probes properties of
electrons, plasmons and IMFPs particularly below 200 eV. One of the
best techniques for high-accuracy XAS is the X-ray Extended Range
Technique (XERT) developed by our group [46,47]. All XAS techniques
probe local structure and dynamics, and can be used as fingerprints for
oxidation state, local geometry and dynamics, and dynamical bond
lengths. This is especially good for local structure of partially dis-
ordered systems, even in solution or gas phase.

However, it has been important to us to look at current or perceived
limitations of XAS. For example, can XAS measure accuracies in at-
tenuation coefficients, absorption coefficients and X-ray absorption fine
structure below 0.2%? The answer is Yes: in our absolute measurements
we have achieved accuracies of these coefficients to × −1 10 4 [48,49].
Can XAS measure bonding or nearest neighbour distances to better than
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0.02 Å noting that errors in E0 of 10 eV can shift bond lengths by 0.02
Å? Some highly accurate differential measurements have reported shifts
of bond lengths δr(T) of small values, but can absolute measurements be
made down to these levels? Again the answer is Yes: Bonding has been
measured in Mo, Au to 0.1% or 0.002 Å. How does this compare with
the determination of lattice spacings from X-ray crystallography of
single crystals? On the same ‘real systems’ from crystallography, the
accuracy claimed is similar, namely 0.1% i.e. 0.002 Å.

In other words, high-accuracy XAS, for example using XERT, is a
sensitive probe of local order, local disorder, and dynamics and can
compete or be complementary with many other current techniques
[50–52]. Often our uncertainties and accuracies are 100× smaller
than previous literature [50]. This realisation spurred us to ask: If so,
What is Possible? What new science, physics, chemistry can we dis-
cover? Until recently, this was constrained by limitations in XAS theory,
in part based on muffin-tin potentials, and in part based on limitations
of our modeling of electron transport properties and in situ dielectric
response.

3.1. Full-potential theory and finite difference models for X-ray absorption

With our new full-potential theory [53], we can investigate the
photoelectron interference pattern without fitting parameters for
simple materials, such as copper, demonstrating that accurate experi-
ment and accurate theory can agree [54–57]. This has a density func-
tional theory core (DFT), using a local density approximation with
Hubbard corrections for correlations, and time-dependent DFT (TD-
DFT) for excited state functions via the WIEN2k package. In standard
analysis, we can investigate structural parameters of molecules and fit
down to =k 1 Å−1. This, for example, has allowed us to discriminate
between conformation states in organometallic catalysts, a dramatic
breakthrough in sensitivity and insight [58]. Such developments allow
us to see directly the impact of the previous theoretical predictions of
the inelastic mean free path on the XAS spectrum, effectively via the
XAFS equation:
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Here the amplitude of the interference oscillations χ(k) is given by a
sum over paths rj to all electron density (or each atomic position) with
degeneracy Nj, many-body reduction factor S ,0

2 magnitude of the scat-
tering factor Fj(k), phase offset for the path and scattering ϕj, thermal
(Debye or disorder) broadening σj

2 and inelastic mean free path λj(k).
Notice particularly that the IMFP is a function of the photoelectron

k, so that although the energies of the X-ray or inner shell binding are
large, the XAFS just above the edge has a very low-energy photoelec-
tron energy and momentum, so that the information provided is of the
explicitly low-energy electron IMFP. Notice also that the elastic scat-
tering, which is almost indistinguishable in some other experimental
techniques from the inelastic scattering, is here fully orthogonal. Elastic
scattering strengthens the interference amplitude, while inelastic scat-
tering weakens and dampens the interference amplitude observed ex-
perimentally. This equation is currently used in over 90% of all XAFS
analysis by: path-integral integration over atomic sites (maximum
electron density and scattering); or shell-integral approaches of radial
density or peaks; or Green’s function integrals of higher-order

Fig. 1. One-component Mermin electron energy loss function for = = =A γ eV ω eV0.8, 25 , 25i i i from A) =qℏ 0 Å− ,1 the optical limit; to B) =qℏ 1Å−1; C) =qℏ 2Å−1;
and D) =qℏ 3Å−1 compared to an equivalent Lindhard partial pole representation. The blue curve utilises a Mermin model extension, while the red curve (online in
colour) uses a partial pole representation. The two models coincide in the optical limit. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 2. One-component Mermin one-component electron energy loss function
for = = =A γ eV ω eV0.8, 25 , 25i i i .
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interactions. However, the interference is really a spatial and orienta-
tion-specific integral over the potential throughout space, both at
atomic locations but more generally wherever the electron density and
the change of potential is a source term for scattering. In that sense non-
muffin-tin approaches such as FDMNES and FDMX [53] are part of the
new generation of computational approaches; but the basic idea re-
mains valid. Because of the very good agreement of the experimental
data and theory, the more subtle broadening due to the IMFP became
obvious [56].

Whereas established techniques for IMFP measurement tend to be-
come far less accurate at low energies (below a few hundred eV) due to
elastic scattering and surface effects, X-ray Absorption Fine Structure
(XAFS) is a unique electron spectroscopy that explicitly separates the
effects of elastic and inelastic photoelectron scattering in the photo-
absorption spectrum just beyond an ionization edge. Fundamentally,
the elastic scattering increases the backscatter and the strength of the
interference, while the inelastic scatter dampens the interference as a
function of energy or electron momentum and distance to the scatterer.
From the previous equation, inelastic scattering causes an energy-de-
pendent broadening of the XAFS:

= +E
λ E

E
m

Γ( ) ℏ
( )

2 ΓH (19)

or equivalently, dampens the photoelectron wave-function, modulating
its self-interference. Here ΓH is the (intrinsic) holewidth of the
Lorentzian lifetime of the inner-shell hole state. Given a sufficiently
accurate experiment, and sufficiently robust theory, one can extract the
IMFP from XAFS data.

4. [Photo-]electron inelastic mean free paths - surprising results
from XAS measurements

A particularly striking example of the value of XAS measurements to
electron transport theory comes from analysis of results for elemental
copper [59]. The experimental data for copper has uncertainties of
approximately 0.15%–0.30% in the energy range of interest, which is
highly accurate in this field (usually accuracies are 1%–3%). Fig. 3
demonstrates the sensitivity of our approach to different theoretical
models for the IMFP, and shows that there are substantial discrepancies

between competing theories at low energies. Also clear is the need for a
more realistic account of the IMFP below 30 eV, where there exists no
IMFP calculation that leads to adequate agreement with the experi-
mental data [16].

Fig. 4 shows the required convolution width for the IMFP correction
in copper, while Fig. 5 shows the resulting IMFP values, with un-
certainties. These are three standard deviation uncertainties de-
termined by our fitting procedure based on the propagation of un-
certainties from the experimental error bars. Figs. 4 and 5 also give
theoretical values calculated by Ding et al. [60], Kwei et al. [42], Ta-
numa et al. [61] and Ashley [62]. All use variations of the common
optical data model presented by Penn [14].

Established theories appeared to overestimate the IMFP below
120 eV, so this raises a question as to what a valid theory is and how do
the existing theories need to be reevaluated? This led us to an in-
vestigation of the causal requirements of a theory of plasmons.

Models of the electronic response in condensed-matter systems are
usually derived from free-electron gas or jellium models, which

Fig. 3. Mass attenuation coefficients for copper calculated using different ta-
bulations for the IMFP, compared with experiment [59]. The results are parti-
cularly sensitive to the IMFP at low energies. Earlier theories are severely in-
consistent with experiment in this region. Experimental modelling results (solid
black curve) are from Bourke et al. [16]. Notice that the modelling function
follows the data extremely well above about 40 eV and that the broadening is
well-defined here. At low energies, whilst the alternate works are far too
narrow, the modelling prescription produces greatly improved interference
magnitudes. Residual errors in the complex shape of the XAFS spectrum are
primarily due to limitations in XAFS theory, and allow for some additional
uncertainty in the fitted IMFP.

Fig. 4. Width of the Lorentzian curve to be convolved with the calculated X-ray
absorption spectrum of copper, in order to account for the effect of the finite
IMFP. This curve is produced by fitting the resultant convolved spectrum with
experimental data [59,63]. Also shown are the three-standard-deviation fitting
uncertainties, absent potential model-dependent inaccuracies. The colored
curves represent the broadening associated with literature calculations, which
are highly inconsistent with one another and with the fitted result.

Fig. 5. The Inelastic Mean Free Path (IMFP) for copper from X-ray Absorption
Fine Structure (XAFS) measurements, with three standard deviation error bars
[16] and previous theoretical calculations of the IMFP from various sources.
Significant deviation is seen in the low energy region, as expected. Although
low energy data is not available from the multiple-pole calculation [42], it
agrees best with our results as the energy drops to 100 eV. Below about 150 eV,
we see that the IMFP appears to be lower than previously thought. At energies
below 40 eV, model-dependent effects could plausibly increase the fitted va-
lues, but are unlikely to bring them close to the plotted theories.
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commonly neglect to account for the lifetime broadening of individual
plasmon and single-electron excitations in a constrained, physical
manner. This can lead to potentially significant errors in electron en-
ergy loss spectra and electron inelastic mean-free-path (IMFP) calcu-
lations. Even when broadening parameters are included in Drude or
Mermin-type models, they are almost always held as constants even
though the lifetime broadening of a plasmon or single-electron excita-
tion is, in fact, likely to be variable based on its energy and momentum
[28,64]. The inclusion of the broadening term γi also complicates the
[optical limit] data-matching procedure. When γi = 0, δ functions may
be uniquely defined with amplitudes matching the optical ELF data.
With excitations of finite width, however, there potentially exist many
possible ways to fit the optical spectrum, and thus the parameters Ai, ωi,
γi are not uniquely defined. This results in a large range of potential
values for the ELF at high values of momentum transfer q.

5. Excitation broadening and sum-rules

These problems may be addressed with the implementation of a
momentum-dependent lifetime γi(q) assigned to each excitation. To
provide any valid model, it must be constrained by (causal) sum rules
[38]. The Thomas-Reiche-Kuhn rule, also commonly known as the f-
sum rule, is given by

∫≈ ⎡
⎣⎢

− ⎤
⎦⎥

∞π ω ω
ε ω

dω
2

Im 1
( )i

2
0 (20)

This rule is generally applicable to all values of momentum transfer
ℏq, and is commonly used to evaluate the consistency of measured and
calculated optical dielectric data [20]. This expression applies to a
single oscillator, or a free-electron gas with a well-defined resonance
frequency ωi. For a general material with several resonance peaks, the
plasma frequency must be replaced using = =ω ω πne m(4 / ) ,i P

2 1/2

where n is the (local or effective) density of electrons in the material. In
any Lindhard model or in a Dirac-delta function optical limit model,
this is a direct integral of delta-functions across the available range of
energies for possible plasmon contributions (see below, Eqn 13, Eqns
38, 39). If any optical data is already compliant with the f-sum rule,
then we need only ensure that the value of the f-sum, defined by the
right-hand side of Eq. (20), is self-consistent across all momenta.

The Kramers-Kronig, or KK-sum rule, is given by

∫+ ⎡
⎣⎢

− ⎤
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ε q π ω ε q ω
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Whereas the f-sum rule relates to the integral of the oscillator
strengths or equivalently the number of electrons per volume in the
solid, the KK-sum rule is a statement of causality as the dielectric
function must be a self-consistent complex function with the real
component directly related to the imaginary component. This rule is
also applicable across all momenta, however the left-hand side of the
expression can be ill-defined for q≠ 0. We therefore make an approx-
imation following the Drude dielectric theory, which represents the real
component of the inverse dielectric function in terms of ωq, the re-
sonant or peak energy of an excitation at momentum ℏq [42]:
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This allows us to re-write the KK-sum rule as
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where again we find a constraint that the right-hand side of the ex-
pression must remain constant across all momenta. In general, the be-
haviour of an excitation typically follows some kind of dispersion re-
lation, whereby the resonant energy of the excitation is related to its
momentum following some functional form g such that

=ω g q ω( , )q i (24)

A simple approximation for g, sometimes used in Drude theories, is
that of a free particle:

= +g q ω ω
q
m

( , )
ℏ
2i i

2

(25)

which is consistent with Eq. (2) in the trivial case of =α 1. Whatever
form g may take, it is apparent that as the energy of the excitation
changes with its momentum, so too must its amplitude change in order
to continue to satisfy the sum rules. Further, whatever functional form
one takes for the ELF of the free-electron gas component, this change in
amplitude must counteract an equal change in both the f-sum and KK-
sum values. We therefore infer the following condition for any model of
the dielectric function:
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This expression may be simplified further for any model that re-
presents resonances in the optical limit as delta functions. Although it is
generally unphysical for a resonance to correspond to a delta function
due to its implied infinite lifetime, such a modelling is not necessarily
unphysical as the optical limit is itself an idealisation, existing in the
realm of zero momentum. A model which constrains =γ 0i in the op-
tical limit may still include finite lifetime resonances for finite mo-
menta, and can also be used to uniquely parameterise the optical ELF
following (6). For such a model, we may write the following powerful
condition constraining the dielectric function [65]:
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5.1. Symmetric rectangular broadening

We can use a simple example to illustrate how these sum-rule re-
strictions can be used to develop a formalism involving a q-dependent
plasmon broadening width γ(q). The simplest arbitrary form possible
for a single plasmon resonance making up an ELF would be that of a
rectangular function defined as follows:
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As before, Ai is a constant amplitude factor designed to match ex-
ternal data in the optical limit and γi is the plasmon width. ωq is the q-
dependent resonant energy for the plasmon pole given by a dispersion
relation =ω g q ω( , ),q i where =ω ωq i when =q 0.

In the optical limit, the ELF defined by Eq. (28) gives an f-sum rule
result of Ai (RHS of Eq. (20)), and a KK-sum rule result of

+
−lnA ω

γ
ω γ
ω γ

/ 2
/ 2

i q

i

q i
q i

(RHS of Eq. (23)). Note that the f-sum rule result is entirely independent
of both γi and q. In the limit of γi approaching zero, the KK-sum rule
result also reduces to Ai, meaning that for a lossless excitation both the
f- and KK- sum rules are consistent and independent of q. This of course
is true for the Lindhard and related models, where =γ 0i .

If γi is finite, then the KK-sum rule will retain its ωq, and hence q,
dependence. This means that a rectangular form for plasmon re-
sonances can never satisfy Eq. (27), and therefore can never be self
consistent for constant and finite broadening widths. This limitation
applies to constant and finite widths in both the Drude and Lindhard
dielectric theories.

This can be generalised to a variable width γi(q) with a re-
normalisation factor Ni(q) to no avail. A symmetric rectangular
(broadening) function cannot satisfy the sum-rules as q increases [65].
A generalisation, not proven, is that the plasmon broadening for in-
creasing finite momentum transfer cannot be symmetric.
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5.2. Asymmetric rectangular broadening

An asymmetric broadening is the only way in which we can ensure
that the effect of broadening, like the effect of the renormalisation
factor Ni(q), changes the outcome of the KK-sum rule and the outcome
of the f-sum rule by the same amount. For our example plasmon equa-
tion, this means we must rewrite the equation as
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where + =α q β q γ q( ) ( ) ( ),i i i and ≠α q β q( ) ( )i i ∀ ≠q 0. The aim is then
to construct αi(q) and βi(q) so that the broadening they invoke affects
the two sum rules equally, thus ensuring satisfaction of Eqs. (26) and
(27) for all values of q. We define the renormalisation factor as
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Since we have defined an explicit form for our excitations (Eq. (29)),
we can substitute into Eq. (27) to find an expression for the width
parameters αi(q) and βi(q):
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This relationship is satisfied by the trivial case of = =α q β q( ) ( ) 0,i i
corresponding to a partial pole or lossless plasmon model [66]. Hence
we have proven the self-consistency of the Lindhard model. We can also
find an expression for Ni(q) by combining Eqs. (29) and (30), yielding
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We now have two equations (Eqs. (31) and (32)) and three un-
knowns (Ni(q), αi(q), and βi(q)). We must therefore invoke a third
constraint, which we will construct by relating the broadening para-
meter αi(q) to the peak resonance energy ωi(q). All of these options may
be conveniently described by defining the following relationship be-
tween αi(q) and ωi(q):

=
−

+ −+

α q ω
ω ω

ω ω
( )i q

q i
ω

a q i1
i
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We made three hypotheses to define the limits of parameter space:
1. = =α q β q( ) ( ) 0,i i ‘a partial pole or lossless plasmon model’ (e.g.

Lindhard, symmetric): =α q( ) 0,i for all q. i.e. = −a 1i
2. ‘electronic excitations will propagate only at energies higher than

the plasma frequency’ = = −ω ω α q ω ω(0): ( )p i i q i. i.e. =a 0i . This
moderate broadening model in which excitations in the optical limit
may result only in higher-energy excitations at finite momentum
transfer, represents an approach similar, for example, to that of Sorini
et al. [24].

3. ‘excitations may exist below the plasma frequency’
> > −q α q ω ω0, ( )i q i. e.g. =a 100i . Resonances broaden to encompass

energies both above and below the plasma energy of the material. This
latter behaviour is qualitatively consistent with what may be expected
in a Mermin model.

Among these models, it is found that none reproduce satisfactorily
the experimental results of the previous sections across all energies, but
rather that they align reasonably with experimental results within dif-
ferent energy regimes [65]. This implies that the level of broadening
must be explicitly constrained in an energy-dependent fashion in ad-
dition to the momentum-dependence given by our sum-rule analysis.
Further, while it may be expected that an asymmetric rectangle is not a
physical model for broadening a spectrum into q-space from the optical
limit, a key principle is that any alternative oscillator form must also be
asymmetric.

The Mermin function can comply with the sum rules and therefore is
an excellent example of a possible asymmetric broadening model.
Alternatively, one might adapt the Lindhard functional using

→ ′ = +u u ω iγ q
v

( )i
F

. This broadens the plasmon resonance, but does not
preserve the local electron number density in the ELF and ergo breaks
the Kramers-Kronig sum-rule. The Mermin functional normalises this,
preserves the KK and f sum-rules ∀γi, reduces to the Lindhard model for
γi→ 0, and reduces to the Drude model for q→ 0.

However, the optical limit data can arise from a variety of experi-
ments and a wider variety of theoretical (usually density functional
theory) models. The experimental data can be matched exactly to a
partial pole model or fitted with or without uncertainties to an en-
ormous array of many pole or multiple pole models. In the latter case
the experimental or theoretical optical limit data is approximated in
various ways with different resulting IMFPs.

Also, the degrees of freedom imply that a potentially infinite
number of Mermin models can fit a given optical limit data set yet with
extremely different predictions as to the IMFP and other low energy
electron properties.

Mermin fitting approaches also suffer from physical limitations. For
instance, the representation of the electron oscillators usually involves
the use of a single broadening parameter γi for each excitation. In
reality, the lifetime of an excitation is dependent not only on its energy
but on its momentum, and so the use of a single parameter for this
purpose is insufficient. A small number of works have investigated this
problem, but without a clear physical guidance on the quantitative
momentum-dependence of the broadening [64].

An even more severe problem is the initial assumption used in all
optical data models that the solid is a sum of non-interacting FEG re-
sonance terms. Clearly all of the electrons in a solid can interact, and
therefore each excitation channel must be affected by all of the other
resonances of the material.

5.3. The coupled-plasmon model

In light of these limitations, we have presented a new model based
on a self-consistent Mermin representation with momentum-dependent
broadening widths γi(q) [19]. The first step, as in all optical data
models, is to determine the spectrum at =qℏ 0. To solve the problems
of uniqueness and precise spectrum matching, we defined the following
condition for all excitations i:

=
→

γ qlim ( ) 0
q i0 (34)

This reduces the optical behaviour to the equivalent of a Lindhard
model, uniquely constrained by Eq. (7). As suggested earlier, this re-
duction to Lindhard behaviour is permissible as the optical limit is an
idealisation that does not apply to any real physical (electronic) system.
Moreover, such a reduction is actually predicted by a self-consistent
dielectric model.

The next problem is to specify the form of the values for γi(q). For
each optical component, we define a Mermin function which therefore
obeys all the sum-rules and extensions into q-space. We then assert that
the lifetime of each excitation is determined by the probability of it
transferring energy into other valid excitations with magnitudes de-
termined by their relative oscillator strengths. This approach solves not
only the problem of specifying γi(q), but also the problem of accounting
for interactions between excitation channels, because it explicitly
quantifies the coupling of the plasmon oscillations. We have seen that,
for a free particle, an IMFP may be evaluated using Eq. (4). We may
readily use the same formalism to derive an effective IMFP for a bound
particle, provided we assign appropriate limits to the momentum in-
tegral. In this case, we use the standard relationship = ωℏq

m
ℏ
2

2 2
to gen-

eralise the expression for new momentum limits q* ± to
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± = ± −q
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( ℏ )
2 2

(35)

Given an effective IMFP, we can then infer a lifetime τ for the ex-
citation by dividing the IMFP by the group velocity dω

dq
q . This derivative

is evaluated based on the dispersion relation predicted by the Mermin
formalism at the relevant point of energy and momentum. The lifetime
τ is then inversely proportional to the broadening parameter

=γ ω q τ( , ) ℏ/ , which we therefore define at any given combination of
energy and momentum:
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The width γi(q) for a particular oscillator i is then related to this
generalised broadening function following

=γ q γ ω q( ) ( , )i q (37)

with the special case at the optical limit of =γ γ ω(0) ( , 0)i i .
In the first instance, calculations are performed using a combination

of Eqs. (4), (8) and (35), building an electron ELF using Lindhard-type
FEG functions to approximate the behaviour of the solid. This compu-
tation is equivalent to the longstanding full Penn algorithm (FPA) [14],
which forms the basis of several tabulations currently in the literature
[25]. Values for γi(q) are then obtained using Eq. (36) to define
broadening widths for Mermin functions at all energies and momenta,
and a new ELF is built using these functions. The process is then re-
peated until the electron ELF is converged and therefore self-consistent.
Mathematically, we may define this iterative formalism by representing
the inverse IMFP as a sum of broadened oscillators with relative
strengths Ai:

∫ ∫ ∑= ⎡
⎣
⎢

−
=

⎤
⎦
⎥

−

−

−

−

+λ E
a πE

A
q ε q ω γ q ω ω

dqdω( ) ℏ Im 1
( , , ( ) ; )N

o q

q

i

i

M i N p i

1
0 1

E EF
ℏ

(38)

This equation can then be generalised by substituting an integral
form of (7) to obtain

∫ ∫ ∫=
′

⎡
⎣⎢

−
′

⎤
⎦⎥

⎡
⎣
⎢

−
=

⎤
⎦
⎥ ′

−

∞

−

−

−

+

λ E

a πE πω q ε ω

ε q ω γ q ω ω
dω dqdω

( )

ℏ 2 Im 1
(0, )

Im

1
( , , ( ) ; )

N

o q

q

M i N p i

1

0 0 data

1

E EF
ℏ

(39a)

= −−γ q
dω
dq

λ E N δ( ) ℏ ( ) Θ( )i N
q

ω q
N

,

1

q (39b)

where the broadening values γi(q)N are given in terms of the IMFP λ(E)N
by comparison with Eq. (36). Θ is the Heaviside step function and δ is a
positive infinitesimal. Successive iterations of Eq. (39) generate a cou-
pled-plasmon model of increasing order, with convergence to a self-
consistent result typically achieved by N>4.

This plasmon coupling theory [19] is then the first physical, un-
iquely constrained optical data model since the Penn algorithm [14].
Critically it has a similar unique match as the Penn model to any optical
limit data, experimental or theoretical, by being a Partial Pole Model in
the optical limit.

The theory computes explicit and individual γi(q, ωi). It predicts
greater broadening for higher momenta, because more lower-energy
plasmon contributions will contribute to the higher energy broadening
due to the plasmon coupling. It also predicts that in some cases plas-
mons below the plasma frequency can contribute significantly to the
scattering of higher-energy plasmons. Since it calculates γi(q, ωi) using
the loss spectrum itself, it is also self-consistent once converged.

Some might prefer the Drude-type models, where the γi in the

denominator, however determined, is exactly the Lorentzian broad-
ening and is precisely the inverse of the lifetime. However, in that
scenario the γi is usually unclear and its extension into q-space is even
less clear. Similarly, the IMFP can be defined simply from the plasmon
velocity and lifetime, so if optical data appears to have a specific re-
sonance with a width of γ, then that should translate directly to
equivalent lifetime and IMFP. In this self-consistent model, it does. If
there is only a single isolated plasmon, approximating a δ-function,
then simpler formalisms may be more-or-less effective. The error, per-
haps, will be given by the magnitude of the coupling and broadening.

Fig. 6 indicates the significance of the lifetime broadening and the
plasmon-coupling to the ELF of metallic Mo. In a qualitatively similar
fashion to previous Mermin-type modelling [41], the broadened ELF
has less structure at high momenta and predicts greater scattering losses
at low energies, leading to a lower electron inelastic mean free path
(IMFP). The impact of the coupled plasmon model, and broadened
models in general, is much more pronounced when the plasmons have
structure than when there is a single narrow plasmon (e.g. Mo versus Al
in Fig. 7). The implementation of self-consistent excitation broadening
has a dramatic effect on the IMFP for molybdenum due to its broad loss
spectrum and many excitation channels, while the reduction for alu-
minium is far more modest due to its singly-resonant loss structure. To
summarise: The introduction of the coupled plasmon model makes a

Fig. 6. The electron energy loss function (ELF) of elemental molybdenum. (A) is
calculated using a lossless Lindhard model, while (B) utilises a self-consistent
coupled-plasmon model (Eq. (39)) to incorporate excitation broadening.
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major improvement and a correction by up to 50% or more, from 0 to
120 eV and above, on the results from a Lindhard model. Compared to
one of many (advanced) Mermin models the improvement is perhaps
30% or more below 60 eV or so but is still significant and 10–20% up to
and above 120 eV, in part explicitly due to coupling. Conversely, for an
ideal simple system such as aluminium where there is effectively only a
single isolated plasmon, the coupled plasmon model make a mild im-
provement compared with Lindhard models; and most of this im-
provement is due to the lifetime broadening of an advanced self-con-
sistent Mermin model rather than particularly due to coupling of the
plasmons. Again to summarise, the coupled plasmon model is very
important for all models where the is more than one plasmon, isolated
or overlapping; and the use of a finite lifetime for the plasmon away
from the optical limit is almost always essential.

Another area of useful insight on plasmon models relates to the
investigation of the Bethe Ridge (or Bethe Surface) [27]. It has been
used to guide and constrain dielectric models since 1930. The original
idea was that the high-momentum limit should correspond to a classical
free particle:

=
→∞

ω
q
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ℏ
2q

q

2

(40)

Recent work has shown that the dispersion relation at intermediate
energies is also extremely important for low-energy modeling and that
the functional form has a significant impact upon the understanding of
transport properties. For example, when an excitation only follows the
Bethe Ridge at high momenta, then the rate of change of ωq - which we
understand as the group velocity vg - will also be momentum dependent.
It is therefore important to check that the theory also obey the energy
conservation condition:
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We find that in Lindhard-based models such as ours the low-energy
excitations have a minimum lifetime broadening if =E p m/2 ,2 im-
plying somewhat intuitively that free particles interact less strongly
with the solid than bound states. More importantly, this is offset by a
corresponding maximum lifetime broadening at higher momenta,
meaning that the integral is able to recover the classical result of
Eq. (41) at each energy transfer ω. Conversely, Drude quadratic and
quartic extensions fail because they predict smoothly-varying group
velocities that are always either higher or lower than the classical re-
sult, and therefore erroneously integrate to a total energy that is in-
consistent with Eq. (41).

The coupled-plasmon theory makes new predictions for low energy
electron transport in matter. Major differences are seen below
200–300 eV, with apparently improved agreement with experiment,
and consequences for LEEM, PEEM, LEED, EELS, Monte Carlo and de-
tector design. This is a constrained physical model of plasmon and
single-electron excitations in a bulk solid. Interaction and coupling
between different resonant excitations is included. High energy re-
sonances couple to low energies, therefore yielding increased broad-
ening, effective for all energies. The model explains a significant por-
tion of observed discrepancies between theory and experiment in low
energy electron IMFPs, and enables a robust and fully self-consistent
theory with no free or fitted parameters that reveals additional physical
insight not present in previous work.

6. Selected recent developments by other groups

Sorini et al. [24] in a series of publications have developed their
tabulation / core theory from a single pole formalism for XAFS and
IMFP to a multiple-pole formalism. They use a quartic Drude extension
into q-space.

Use of Mermin functionals for representing the dielectric function
and energy loss function have also been implemented by Denton et al.
using a constant broadening for each oscillator [39]. This tabulation
commented that Mermin has not previously been used because of the
computational complexity. One of their key conclusions (with which we
agree) is that Mermin functions, or causal broadening of plasmons, even
if unconstrained and ill-defined, are far better than the use of loss-less
functionals.

Werner et al. [20] have made major developments in IMFP theory
and in particular have prepared a WIEN2K code for the DFT compu-
tation in the optical limit. In this work they use the Drude - quadratic
extension with =α 1 and =α 0.5, in part on the basis of occupation
number. Only the =α 1 extension approaches the correct high-mo-
mentum Bethe ridge limit. These excellent works may need to consider
the functional form of the q-space extension.

Da et al. [40] and related papers have looked at ways to take the
Mermin formalism with finite (large) widths in the optical limit, and
exactly match the experimental data. In pursuit of this they have used
some 77 Mermin functions to fit the optical limit, including 37 negative
oscillators, with arbitrary undefined widths to ‘fill’ optical data. This
impressively achieves ‘perfect agreement’ with Chantler experiment -

=χ 0r
2 by empirical fit. However, while the negative oscillators help

resolve the limitation of precise agreement with the optical limit, they
generate a large number of unconstrained resonance terms, which in
turn exacerbate another problem with the Mermin representation - that
of uniqueness.

In recent papers, Nyugen-Truong [67–70] have implemented three
variations of modeling and theory using Mermin functions. In all cases
they report major improvement with the lifetime broadening and the
Mermin extension into q-space. These models do not have a q depen-
dence of the widths, and do not have plasmon coupling. However, they
do find an important and similar improvement for their models with the

Fig. 7. Theoretical and experimental determinations of the electron IMFP for
molybdenum and aluminium. The solid black curve with uncertainties shows a
recent high-precision Mo measurement from XAFS [19], while the green dotted
curve uses a more traditional fit-based Mermin modelling. The blue dot-dashed
curves show results from a lossless Lindhard type representation of the electron
ELF, while the red dashed curves use the current coupled-plasmon model de-
fined by Eq. (39). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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implementation of Mermin functions, and also provide insight into
potential implementations of aspects of exchange and correlation for
the dielectric response of the absorbing material. The key differences
between a constant broadening for the Mermin function and equiva-
lently a constant lifetime for the plasmons in q-space is that there is no
change of shape with q, so that the behaviour can be a good first order
or average correction across central plasmon frequencies and momenta.
Hence it might be expected that dependencies from low E to higher E
would change the functional form. de Vera and Garcia-Molina have an
arXiv manuscript (2019), also using Mermin functions, also showing
improvement compared with Lindhard functions, and noting the dis-
crepancy with the experimental data for Cu from XAFS measurement
[71].

Excellent recent work has been that of Vos and Grande [72–75] on
experimental and theoretical modelling. They have detailed investiga-
tions of comparative theory, excellent complementary experiments;
comment on the difficulty of separating surface from bulk plasmons;
and discuss an explicit separation of plasmons from interband transi-
tions. They introduce the Mermin-Levine-Louie function as a corre-
sponding improvement over the Lindhard-based Levine-Louie func-
tional.

Shirley has developed the ‘Ocean Software’, incorporating the
electron-hole correlation of excitations [76,77]. This may have some
important contribution to remaining discrepancies in IMFP and ELF
modelling. And Tanuma, Powell, Penn continue to produce the
benchmark new tabulations, references, and summaries of experiment
for investigations on IMFP and other electron transport properties.

7. Conclusions

Recent work has clarified new understanding of the behaviour of
bound excitations and plasmons. Plasmon lifetimes must be finite to
agree with causality and experimental data. Plasmon modes are clearly
material-specific and so there is no Universal curve; or equivalently that
the Universal curve must respond to material-specific excitations. These
material-specific plasmon modes must couple, to exchange energy and
electron oscillations, and to increase broadening of higher momentum
extensions. Solutions should not be arbitrary with infinite Mermin
peaks and negative amplitudes. Solutions must also be self-consistent.
Excitations below the plasma frequency cutoff are essential to explain
observed loss spectra.

Mermin functionals are an essential tool in explaining electron
transport properties, obeying sum rules and able to be constant
broadening in the optical limit in many-pole models or partial pole
representations with increased broadening with q. Recent work is re-
cognising this but there are many additional areas to explore and work
on.

The coupled-plasmon model intrinsically accounts for the interac-
tion between different plasmon excitations in the medium, and relaxes
the longstanding approximation that a solid is a collection of non-in-
teracting nearly free-electron gases. Our implementation of excitation
broadening, which is energy- and momentum-dependent, self-con-
sistent, uniquely constrained, and sensitive to the band structure of the
absorbing material, subsequently has a dramatic effect on the electron
IMFP.

Refinement with further advanced DFT or other modelling allowing
increases to higher energies is a significant but important challenge to
current theory. Similarly, inclusion of higher-order effects such as QED
self-consistency, correlation, exchange-interference, and excitonic ef-
fects may yet contribute significantly, particularly below 100 eV. There
is an urgent need for additional high-accuracy measurements of IMFPs,
including from XAS, and an associated need for advanced theory to
extract the IMFP as close to the edge as possible. Thus far there are far
too few experimental datasets. We have concentrated on elements and
materials where high quality datasets have been produced; more are in
preparation; however, there will be computation of numerous

additional reference elements and materials in the near future and the
computation of these is well advanced.

The work enables for the first time an approach that includes ex-
citation lifetimes without the need for arbitrary fitting algorithms,
meaning that the inclusion of broadening parameters can become
standard practice for IMFP determinations. This represents a significant
step forward in the understanding of electron transport in general
condensed matter systems, and is directly and immediately applicable
to all current low-energy electron spectroscopies and microscopies.

Current standard XAFS is a true bulk technique - only bulk plasmons
are measured or observed. However, related techniques of ‘Normal
Incidence’ and ‘Grazing Incidence’ XAFS are intermediate; and
ReflEXAFS is almost purely surface plasmonic. Hence while much of
this discussion has focussed on bulk plasmons and bulk electronic
properties, there are techniques related more directly to surface prop-
erty measurement to be investigated in the future.
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