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A vignetting profile form is incorporated with characteristic X-ray emission

data from a Johann-mounted crystal diffractometer. We prove the validity of

the specific form of the vignetting profile. A new characterisation of the Kα

profile for vanadium is presented, which supports and is superior to the cur-

rent benchmark. Using the profile form as a correction for systematic vignett-

ing reduces energy uncertainties by up to a factor of two or more. The greater

precision in measurement robustness allows current atomic theories and pro-

files to be tested with higher levels of accuracy.

1 | INTRODUCTION

X-ray diffraction is a widely used experimental tech-
nique in disciplines ranging from virology to particle
physics. It is the most successful method for determin-
ing molecular structure in species ranging from small
molecules like ferrocene[1] to large, complex protein
structures such as Blastochloris viridis[2] and amyloid-
β.
[3] X-ray diffraction is also the only method to measure

characteristic atomic energy eigenvalues for medium- to
high-Z elements, which has widespread applications in
chemistry,[4] astrophysics,[5] plasma physics,[6] nano-
powders,[7] and agriculture.[8] Furthermore, accurate X-
ray diffraction has the potential to give insights into
new physics by testing fundamental constants in quan-
tum electrodynamics.[9–12] Needless to say, significant
improvements to determine photon energies in the X-
ray regime will improve the quality of data and will
further research in all these fields. Whilst conventional
crystallography with wide angle detectors will usually
not be aperture-limited except at the source, most
areas of X-ray diffraction and X-ray spectroscopy are
aperture-limited at source and detector so that the
optics of spectral profiles are critical to insight. We have
developed a method to significantly reduce a systematic
uncertainty in X-ray spectroscopy and atomic physics.
However, a similar reduction of errors can be made in
all X-ray diffraction or spectroscopic measurements

where propagating photon fields are truncated by a
wedge or other aperture.

One immediate application of a vignetting profile fix
is towards a recent study observing magnetic circular
dichroism in Fe Kα emission.[13] From their Figure 2, in
attempting to ensure the parallel nature of the photon
field, vignetting may have occurred. Therefore, it should
be tested for and if found, accounted for to strengthen
the claims of the investigation.

X-ray diffraction involves a photon beam incident on
a diffracting crystal, which has an output angle related to
the photon energy. Therefore, measuring X-ray energies
is akin to measuring angles. There are a few ways to
achieve this measurement, each with advantages. One
method uses a flat crystal with well-defined lattice spac-
ing to use Bragg's law to establish the relationship
between angle and energy.[14] Another method uses a
Johann-type (curved) crystal spectrometer, with a
strained lattice spacing, so must be calibrated to provide
a reliable relationship between angle and energy.[15,16]

For both techniques, it is essential to ensure a highly
parallel incoming photon beam. Two energy-degenerate
but non-parallel photons will be detected at different angles,
and therefore appear to be non-degenerate. Non-parallel
photon fields lead to greater instrumental broadening, and
uncertainties in collected data. Johann spectrometry has
the crystal focussing all degenerate photons onto the Row-
land circle. However, not all measurements for a given
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transition can be taken near the Rowland circle. To
ensure a parallel photon field, an adjustable “Seeman”
wedge limits the diffracting region of the crystal which
in turn alters linearity and bandpass, as illustrated in
Figure 1. There is a trade-off: Cut-off too much of the
photon field, and it may be parallel, but it has also
become vignetted—too narrow to fully represent the
spectral profile. A vignetted beam is one which has a
decreased photon intensity towards one edge of the beam
due to optical collimation.

How do we minimise vignetting whilst achieve a
more parallel incoming photon field? Previously, the
answer has mostly been that no vignetting is permissible,
as this will shift the final results for energy, which is the
entire purpose of any energy measurement. Experimental
Gaussian broadening can be accounted for by
deconvolution so it is often recommended to have a
broader bandpass to obtain a full but lower resolution
spectrum. However, as we stray from the Rowland circle,
the defocussing broadening becomes too great to obtain
reliable profiles or structural insight.

This work explains that, through incorporating a
reconstructed vignetted profile, accurate results are
achieved—consistent with previous results even when a
wedge has artificially shifted the recorded energy cen-
troids. Furthermore, it has enabled some experiments to
report uncertainties a factor of two lower which have
enabled measurements to be taken with precisions not
previously possible.[16]

2 | METHOD

The X-ray Optics and Synchrotron Science (XROSS) labo-
ratory at The University of Melbourne uses a Johann dif-
fractometer in conjunction with four gravity-referenced
clinometers to take high accuracy measurements of
energy from atomic emission spectra in the 4 to 8 keV
range. A 20 keV electron gun beam is incident upon high
purity (>99.99%) metal foils to create the fluorescence
photons; these are diffracted by a curved germanium
(220) crystal (with radius 1,121(10)mm and thickness

0.820(5)mm); through an adjustable “Seeman” wedge; to
a multi-wire gas proportional counter with backgammon
geometry; with angles monitored by four gravity-
referenced clinometers placed at the base (B), the crystal
housing (CC), the lower (DL) and upper (DU) portion of
the detector arm. The detector arm length is 1,500(5)mm,
source to crystal length is 330(5)mm, and the source
width (FWHM) is 5(1)mm. The overall performance,
count-rate, and linearity of the backgammon detector is
discussed by Melia et al.[17] Figure 2 provides a schematic
and Figure 3 gives a photograph of the diffractometer
and source. Key geometric characteristics are given in
Table 1.

The fluorescence incident on the crystal diffractome-
ter must be close to parallel, or degenerate photons will

FIGURE 1 A side-on view of the

crystal diffractometer and “Seeman”
wedge setup. The smaller the gap W, the

more parallel the out-coming

photon beam

FIGURE 2 A schematic diagram of the experimental setup,

not to scale. The approximate location of the four clinometers is

given in square boxes. Relevant dimensions are given in Table 1.

The detector is not always near the Rowland Circle as shown.

Table 2 provides the distances between the two for various

transitions used in this experiment
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appear non-degenerate and lead to instrumental broad-
ening or shifts. This is essential in studies with flat crys-
tals. Mendenhall et al.[14] go to great lengths to ensure
the parallel nature of their double crystal diffractometer
and hence the photon field. With Johann spectrometry,
the fluorescent photons are focussed onto the Rowland
circle so that non-parallel fields are not so large an issue
so long as the detector is near the Rowland circle. This
is clear in our data without a wedge, Figures 5-8 show
the Kα profiles of titanium, chromium, vanadium and
manganese (Z = 22 − 25) and the distance from the
Rowland circles to the detector is given in Table 2. The
increase of instrumental broadening with distance from

the Rowland circle is obvious. Only titanium—the pro-
file where the detector is very close to the Rowland
circle—has ideally resolved Kα1 and Kα2 peaks for an
“open” wedge.

Since there is no well-defined crystal lattice spacing
for curved crystals, the detector arm angle must be cali-
brated. This is typically done using transitions that have
low uncertainties in the current literature to build an
angular dispersion function that will relate angle and
energy. This involves moving the detector arm to observe
a range of different transitions. Therefore, the detector
will not be in the region close to the Rowland circle for
the entire experiment, making the wedge an essential
piece of apparatus.

3 | DISPERSION FUNCTION

For flat crystals, the Bragg condition is the particularly
simple relationship between photon energy and diffrac-
tion angle. However, for curved crystals, the relationship
is more complex and must be predicted and tested by
dynamical diffraction theory.

There are three clinometers: the crystal clinometer
(CC), detector upper (DU), and detector lower (DL), each
referenced to the base clinometer (B). The raw outputs
are voltages. These clinometers are calibrated to great
angular precision to obtain a precise dispersion function
and therefore energy, using well-defined literature values
for other transitions in a similar region to the target tran-
sition. We show the transitions used by a recent publica-
tion[16] with the aim of characterising Sc Kα in Table 3.

For accurate or even good calibration, peak energies
of Kα1,2 are insufficient. X-ray emission from electron
bombardment undergoes many processes with contribu-
tions in the spectra from many energy eigenstates (from
relativistic multi-configuration DHF computations) rang-
ing from the tens to the tens-of-thousands depending
on the transition. Whilst this theory is undergoing
great advances at this time (e.g., GRASP2K),[5,19–22] it is
known that convergence is difficult as is comparing a
partially resolved spectrum with thousands of eigen-
values and amplitudes. The most detailed current
characterisations of experimental spectra are given in the
International Tables for Crystallography, Vol. C[18] and,
for example, ref. [16] as well as papers sourced in those
references. Hence, it is common in recent literature for
3d transition metals to be described with six Voigts for
Kα and five for Kβ. Indeed, according to the goodness-of-
fit measure χ2r this often yields values near unity and ergo
matches the information content of the experimental
spectra. Hence, we here use the full characterisation (six
Voigts for Kα and five for Kβ) required as discussed
therein. The Kα and Kβ transitions are modelled with a

FIGURE 3 Photograph of the experimental setup

TABLE 1 The geometry of the experimental setup with

estimated uncertainties

Parameter (symbol) Value

Rowland circle radius (Rz) 1,121(10) mm

Detector arm length (ZF) 1,500(5) mm

Source to crystal length (BXz) 330(5) mm

Source width (FWHM) (sw) 5(1) mm

Crystal thickness (T) 0.820(5) mm

Note: Numbers in parentheses are one standard error uncertainties
of the quoted value referring to the last digits.
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constant background value, B, and n-Voigt profiles, with
parameters of Lorentzian width, W; centroid position, C;
amplitude, A; and each with a common Gaussian
width, σ:

I E;B,σ,Ai,Ci,Wið Þ=B+
Xn
i=0

V E;Ai,Ci,Wi,σð Þ ð1Þ

where the Voigt profile is the convolution between a
Gaussian and a Lorentzian and n = 6 for Kα, n = 5
for Kβ.

Whilst Bragg's law for a flat crystal is insufficient for
curved crystals, there are theoretical models for obtaining
the diffraction profile for curved crystals. One method is
the Moscurve theory derived by Chantler and
implemented in the Mosplate software.[23,24] This takes
the geometric parameters in Table 1 and the crystal plane
of diffraction (Ge 220 in this experiment) to derive a dif-
fraction profile incident on the detector face as a function
of photon energy, E, and detector arm angle, θ:

x=Xmosplate E,θð Þ ð2Þ

Also provided by the Mosplate code are the inverse
functions:

θ=Θmosplate E,xð Þ; E=Emosplate θ,xð Þ ð3Þ

With these equations, the energies in Table 3 and the
detector x-values calibrate the clinometers. Calibration

defines the dispersion function which takes the raw volt-
age output from the clinometers and returns an angle for
the detector arm, θ = Θdispersion(V). Once the dispersion
function is defined, the target transition energy is mea-
sured through Equation 3, E = Emosplate(Θdispersion, x).
The specific form of the dispersion function is dependent
on the number of calibration lines and the particular
apparatus being used. For ref. [16], the following is used:

Θdisp VPið Þ=arcsin
V −P2

P0

� �
−P1 +

Xn
i=0

P i+3ð Þ V −P2ð Þi

ð4Þ

where the parameters Pi are found through least-squares
fitting via the Levenburg-Marquardt algorithm. There is
one dispersion function for each clinometer. An example
for the CC dispersion function is given in Figure 4. Super-
ficially and locally, it looks very much like a simple linear
and monotonic function. Experimentally, the detail and
accuracy arises from inspection of the scatter of indepen-
dent measurements, the variation with the wedge aper-
ture, and the residuals of the fit.

As well as a detector arm dispersion function
matching voltage and angle to a reference point on the
detector, there is a detector face dispersion function
defining variation of energy and angle with the position
x across the detector face. A meander wire proportional
counter has voltage as raw output. There are inevitably
certain systematics to shift the apparent position of an X-
ray event, including electromagnetic edge effects and
detector wire non-uniformity.[17]

Several calibration transitions are used to reduce the
fitting uncertainty to construct the dispersion function by
using more data and more repetitions. Figures 5-8 dem-
onstrates that the further away from the Rowland circle
the detector face is, the greater the instrumental broaden-
ing becomes. In some instances, the data are too broad
and unusable.

Introduction of the Seeman wedge to limit the
diffracting area of the crystal and therefore increase the
parallelism of the incoming photon field enables data to
be used that otherwise would have been unusable. How-
ever, when narrowing the wedge aperture, there is the
possibility of vignetting the data. This introduces a new

TABLE 2 D, the absolute distance between the detector and the Rowland circle

Transition Sc Kα Ti Kα V Kα Cr Kα Mn Kα

D (cm) 16.82(1) 3.69(1) 7.09(1) 16.08(1) 23.44(1)

Note: Comparing the distances given here to Figures 5-8, the relationship between the instrumental broadening and the distance to the Row-
land circle is clear. Numbers in parentheses are one standard error uncertainties of the quoted value in the last digits.

TABLE 3 Reconstructed peak energy values (zero Gaussian

broadening) for the calibration Kα1,2 and Kβ lines

Element Kα1 (eV) Kα2 (eV) Kβ (eV)

Ti (Z = 22) 4,510.901(10) 4,504.911(7) 4,931.996(22)

V (Z = 23) 4,952.224(18) 4,944.652(48) 5,427.320(71)

Cr (Z = 24) 5,415.536(3) 5,405.512(5) 5,946.823(11)

Mn (Z = 25) 5,898.858(5) 5,887.740(5) 6,490.585(14)

Note: The diagram Kα1,2 and Kβ lines are quite insufficient to give
an accurate calibration. Rather the full (six Voigt for Kα; five Voigt
for Kβ) characterisation is used. Numbers in parentheses are one
standard error uncertainties in the last digits. Values are taken from
the International Tables for Crystallography, Vol. C.[18]
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uncertainty to the system. The centre of mass of the
resulting profile can shift to a higher or a lower energy.

We solve this issue with the reconstruction of a
vignetting profile. This enables a wedge to be used to col-
lect usable data, whilst not introducing a vignetting sys-
tematic error to the recorded centre of mass.

4 | VIGNETTING

Vignetting is any decrease in intensity towards the edges
of a detector due to collimation by an aperture or

effective loss of a uniform convolution. It can occur in
any optical measurement from visible spectrum astro-
physics[25] and infrared optics[26] to X-ray optics,[27] and
is a critical consideration in the camera manufacturing
industry and visible optics.[28]

Experimentalists would rather design their experi-
ments with no vignetting. However, this is not always
possible, and in curved crystal experiments can signifi-
cantly reduce the number of profiles collected and hence
the characterisation of energy or profile as the detector
moves away from the Rowland circle (Figures 5-8).

Figures 5-8 are plotted such that each profile has
unity integrated intensity. This helps compare the broad-
ening of the profiles as the wedge size increases. The

FIGURE 4 The CC dispersion

function with the residuals shown for

each calibration reconstructed peak

energy value. The red dotted line shows

the 1σ uncertainty of the final dispersion

function which incorporates all three

clinometers. The error bars for each

reconstructed peak is shown in the

residual plot. The full n-Voigt

characterisation is used to define a

dispersion function, rather than the

diagram reconstructed peak energies.

We show the diagram lines as

calibration points for ease of viewing

FIGURE 5 Ti Kα profile, D = 3.69(1)cm. The wedge position

is indicated in the legend. Each profile is normalised to have the

same unity integrated intensity

FIGURE 6 V Kα profile, D = 7.09(1)cm
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tighter the wedge constraint, the lower the flux of pho-
tons through per unit time, and therefore the lower the
absolute intensity. We increase the counting time accord-
ingly for the smaller wedge sizes. Clearly, as the detector
moves further from the Rowland circle to match the
Bragg condition, a wedge is needed to ensure the data is
not too broad. However, the wedge is a source of system-
atic uncertainty through vignetting the data. Consider
Figures 9 and 10 showing two spectra, taken from the
right-hand side (RHS, high energy) and left-hand side
(LHS, low energy) of the detector face, respectively.
Fitted to our data are the current best literature
characterisations for those spectra[18] with free parame-
ters for: Gaussian broadening, background counts, and a
constant amplitude scaling factor. Both spectra have been

taken with the smallest wedge, highlighting the effect of
vignetting. The effect is visible when comparing our data
to the current theoretical model and observing a signifi-
cantly reduced peak for Kα2 in the RHS fit (Figure 9) and
a reduced Kα1 peak for the LHS fit (Figure 10). Previ-
ously, this data would not have been used in the disper-
sion function, as the fitting χ2r are too large to be a

FIGURE 7 Cr Kα profile, D = 16.08(1)cm

FIGURE 8 Mn Kα profile, D = 23.44(1)cm

FIGURE 9 A profile taken on the right-hand side of the

detector face with the narrowest wedge, 2.54 cm. The model does

not fit the data. The photons incident towards the right side of the

detector face are being vignetted by the wedge and therefore

prevented from reaching the detector. This explains the

significantly greater value for the Kα2 peak for our data compared

to the model and theoretical predictions

FIGURE 10 Similar to Figure 9, but with the profile on the

left-hand side of the detector face. The vignetting of the photons

towards the left side of the detector causes the Kα1 peak to have a

greater amplitude for the data compared to the fit
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reliable calibration line (i.e., the model function does not
fit the data). A reduction in one of the peaks of the fit for
a profile also indicates a reduction in the data for the
other peak. That is, the RHS profile has reduced data in
the Kα1 peak and therefore it is vignetted on the RHS.

So in Johann crystal diffractometer spectrometry,
omitting a wedge gives extremely broad spectra when the
detector is far from the Rowland circle (Figures 5-8), and
using a wedge incorporates a systematic which makes
vignetted profiles unreliable. This has been a consistent
trade-off in many diffraction experiments. However, the
reconstruction of a vignetting profile solves this dilemma.

Vignetting is largely dependent on the wedge separa-
tion and the location of the centroid of the profile on
the detector face. The more narrow the wedge, and the
further to the edges of the detector the profiles are, the
more likely it is that a profile will be vignetted. We deter-
mine when vignetting has occurred by measuring the ratio
between the model and observed Kα1 and Kα2 peak ampli-
tudes, A. When this ratio is not near unity, vignetting has
occurred. For example, if A(Kα1,model)/A(Kα1,data) > 1.05
or A(Kα2,model)/A(Kα2,data) < 0.95 then we can say that
RHS (high energy) vignetting has occurred.

The vignetting suppression at a point on the profile
will take a value between zero (unimpeded) and one
(fully occluded), and hence is a multiplier indicating
what fraction of photons have been allowed to reach the
given x-coordinate of the detector face due to the wedge.

There is no consensus in the literature as to the par-
ticular form of a vignetting profile, however there is good
evidence for a linear ramp function.[28,29] A recent inves-
tigation has confirmed that the vignetting profile is linear
to first order, with higher order effects leading to oscilla-
tions about the linear slope.[30] These oscillations become
higher in frequency and lower in amplitude with increas-
ing photon energy. Therefore, in the X-ray regime the lin-
ear functional is a very good approximation.

We define two vignetting ramp functions, τLHS(x) and
τLHS(x), where τ � [0, 1] and can be thought of as the
fraction of photons cut-off from the detector face with
τ = 0 for photons completely prevented from accessing a
certain part of the detector, τ = 1 for no vignetting:

τRHS xð Þ=
1 x <V1

1−
1−Vh

V 2−V1
x−V1ð Þ V 1 ≤ x≥V2

Vh x >V2

8>><
>>: ð5Þ

τLHS xð Þ=
Vh x <V 1

Vh +
1−Vh

V2−V1
x−V1ð Þ V1 ≤ x≥V2

1 x >V 2

8>><
>>: ð6Þ

where Vh is the maximum amount of vignetting
(Vh � [0, 1]) and V1, V2 are the start and end x-axis
(energy) position for the vignetting ramp. Therefore, the
full vignetting model is the product of the vignetting
slope and original model of six Voigts (1):

I 0 Eð Þ=B+
Xn
i=0

V E;Ai,Ci,Wi,σð Þ
 !

τRHS=LHS Eð Þ ð7Þ

where we can translate between detector x-coordinates
and energy, E, using the Mosplate theoretical predictions,
following 2 and 3.

We test the effectiveness of a linear vignetting correction
applied to the profiles from Figures 9 to 10 (Figures 11 and
12) with the x-axis scaled from the detector x-values to the
energy-axis using Equation 2. The significant decrease in χ2r ,
gives strong confidence in the validity of the model func-
tional and in using the data as calibration lines.

The only new free parameters in the fitting procedure
are the vignetting constants Vh, V1, V2. Each Voigt is still
modelled using the literature values. It is remarkable
how consistent our results are with those of previous
experiments and with our other data not affected by
vignetting. This level of consistency proves the physical
significance of the functional.

Further evidence that this is a physically real phenom-
ena, and the linear slope is the correct model is given when

FIGURE 11 The data (black) and unvignetted fit (red) from

Figure 9 with the modelled vignetting fit (green, Equation 7) and

vignetting slope (grey, Equation 5). The χ2r improvement is highly

significant and strong evidence of both vignetting and of the model

function. The residual of the unvignetted fit has been scaled by a

factor of 0.1 for ease of viewing, otherwise it would dominate the

residual plot and the vignetted residual would not be visible
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considering how the values for V1 and V2 change as the
detector arm angle changes. As the detector arm angle
decreases, so should the amount of vignetting. This is due to
simple geometry of the wedge and visible in Figure 1. For a
fixed wedge, the region of the crystal cut-off from the source,
or propagating towards the detector, decreases with a
decreased detector arm angle. Each transition has a different
Bragg angle, and we can test where the start and end points
of the vignetting slope are for both the RHS profiles and the
LHS profiles. The results of this are given in Figure 13.

By extending the lines of best fit for each of the pairs
of slopes (LHS/RHS pairs), it matches the hypothesis that
as the detector arm angle decreases, so too does the
amount of vignetting. In fact, at about 20∘ it appears there
would be no vignetting at this wedge spacing.

Overall, the effect of vignetting in the dispersion func-
tion, and therefore the precision of angle measurements,
is seen when comparing the dispersion function in
Figure 4 to the dispersion function where no vignetting
profiles are accounted for in Figure 14. This linear ramp
functional for vignetting accurately models the physical
phenomenon with strong robustness.

5 | REDUCTION OF
UNCERTAINTY BY A FACTOR
OF TWO

One result of implementing a stable and robust vignett-
ing function has already been discussed, this is the work
by Dean et al. measuring the characteristic X-ray

radiation of Sc to 2 ppm.[16] Section 4.1 from Dean et al.
they claim their vignetting function attributes a factor of
three lower χ2r in the fitting of the spectra. Furthermore,
in Table 3, Dean et al. show the value for their experi-
ment if they could only use non-vignetted calibration
lines, which has an uncertainty twice that of what they
can achieve through the fitting of a vignetting profile.
Dean et al. were able to determine which of their profiles
had been vignetted, and therefore either remove them
entirely or employ a vignetting profile. If the vignetted

FIGURE 12 The data (black) and unvignetted fit (red) from

Figure 10 with the modelled vignetting fit (green, Equation 7) and

vignetting slope (grey, Equation 6). Similarly, the χ2r is improved

dramatically and the unvignetted residuals are plotted scaled by a

factor of 0.25

FIGURE 13 Plots of the starting (V1) and ending (V2) points

of the vignetting slopes for the narrowest wedge (2.54 cm) for both

the RHS and LHS profiles. The LHS profile parameters have been

shifted to be in the same plot. There is a remarkable consistency

between the RHS and LHS parameters. Most notably, where the

lined of best fit overlap is at almost the same point for each, 19.45∘

for RHS and 19.51∘ for LHS

FIGURE 14 The CC clinometer dispersion function when no

vignetting profile is accounted for. A red circle is drawn to

highlight pairs of points that are very discrepant, due to particular

profiles having significant vignetting distortion. The uncertainty in

the function is a factor of two larger than before. The individual

error bars for each point are not included for ease of viewing
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profiles had been included without understanding that
they were misleading, they would have arrived at a dis-
persion function in Figure 14. Oversight like this can lead
to systematic errors unaccounted for in the error analysis
and provides results with greater than deserved
confidence.

6 | RECHARACTERISATION OF
V Kα

The most recent characterisation of vanadium Kα is ref.
[31]. They report a Gaussian width of 1.99 eV which is
significantly higher than other 3d transition metals.
Therefore, we have performed a recharacterisation of this
profile and have been able to report a significantly lower
Gaussian broadening. Based on this lower experimental
broadening, noting that our results are consistent with
ref. [31], and noting that our parameter uncertainties are
smaller than ref. [31], this characterisation should replace
the standard. We present our characterisation, along with

that from ref. [31] and the difference between the two in
Table 4.

The greatest concern relating to ref. [31] is that their
result of Vanadium Kα has a Gaussian broadening of
1.99(12) eV where all the other transitions measured in
the same study have broadening less than 0.7 eV. Whilst
this in itself is no serious cause for alarm, it suggests
remeasurement to determine whether a fit with less
instrumental broadening will result in a similar
characterisation.

When fitting the parameters for the six Voigt charac-
terisation, the Levenberg–Marquardt least-squares algo-
rithm is used. The initial guess is taken as the
characterisation from ref. [31]. To best compare with ref.
[31], each of the Voigt's three independent parameters
(Lorentzian width, centroid position, and Relative ampli-
tude) are tied to move by a constant amount, rather than
individually. Further, we allow a small shift of the value
of each parameter's estimated 1 standard deviation error
bar following ref. [31]. It is a good sign that only 2 of the
18 Voigt parameters were actually constrained by this. In

TABLE 4 The values for the

characterisation of V Kα using six Voigt

profiles

Peak i Centroid, Ci Width, Wi Relative amplitude, Ai

Chantler et al.[31]

α11 4,952.237(12) 1.45(2) 0.546(10)

α12 4,950.656(184) 2.00(3) 0.114(1)

α13 4,948.266(261) 1.81(70) 0.032(7)

α15 4,955.269(141) 1.76(30) 0.020(2)

α21 4,944.672(21) 2.94(4) 0.274(2)

α22 4,943.014(303) 3.09(26) 0.013(1)

G width 1.99(12) eV

This work

α11 4,952.220(9) 1.52(2) 0.545(8)

α12 4,950.604(130) 2.01(3) 0.115(1)

α13 4,948.321(181) 2.13(68) 0.028(5)

α15 4,955.194(94) 1.72(22) 0.022(2)

α21 4,944.668(14) 2.98(3) 0.275(2)

α22 4,942.978(103) 3.02(20) 0.014(3)

G width 0.89(10) eV

Difference

α11 0.017 −0.07 0.001

α12 0.052 −0.01 −0.001

α13 −0.055 −0.32 0.004

α15 0.075 0.04 −0.002

α21 0.004 −0.04 −0.001

α22 0.036 0.07 −0.001

Note: Numbers in parentheses are one standard error uncertainties of the quoted value referring
to the last digits. The difference is taken as ref. [31] subtract this work.
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Table 4, we present these final values, and the difference
between our value and ref. [31]. The profile
corresponding to our results in Table 4 are given in
Figure 15. Overall, the recharacterisation supports,[31] as
the best fit is found within error of theirs. However, this
new characterisation appears superior due to most
(12) parameter uncertainties decreasing, five staying con-
stant, and only one increasing.

7 | DISCUSSION AND
CONCLUSION

The use of a dispersion function to calibrate gravity-
referenced clinometers to obtain high accuracy mea-
surements for angle, and therefore energy, with
Johann-type diffractometers has been well established
as a state-of-the-art method. This work has showed
that there are further improvements that can be made
to data of this type. We expect that vignetting has been
undetected, and uncorrected, in numerous past investi-
gations. This may cause shifts in energy centroids,
causing conflict between empirical evidence and theo-
retical calculations.

At the very least, by acknowledging and allowing for
vignetting and correcting for it, Gaussian (instrumental)
broadening may be significantly reduced by
implementing a “Seeman” wedge. The vignetting profile
is not limited to the X-ray regime of the electromagnetic
spectrum. The scale of such a spectrum will of course
change with energy, however, the specific shape should
remain linear to first order.

We provide a new characterisation for the V Kα pro-
file that fits well with the previous best characterisation,
with Gaussian broadening reduced by a factor of two.
This novel characterisation should replace the earlier ref-
erence characterisation.[31] Most (12) parameter uncer-
tainties decrease, five stay constant, and only one
parameter uncertainty increases. This should be uncon-
troversial: all but 2 of the 18 Voigt parameters are within
the prior 1 standard uncertainty error.[31]
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