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1. Introduction

X-ray absorption fine structure (XAFS) analysis is a powerful 
experimental technique for non-invasive structural determi-
nations of materials using synchrotron radiation. The XAFS 
phenomenon is observed as a series of oscillatory structures 
in the energy-dependent absorption spectrum of a material 
immediately following an ionization edge. These structures 
are the result of interference of the photoelectron wavefunc-
tion emitted by the ionization process, which interacts with 
neighbouring atoms within a small region in the absorbing 
material. In this way the photoelectron acts as a direct probe of 
local crystal structure, producing spectra sensitive to a range 

of material properties including bond lengths, co-ordination 
numbers, thermal disorder, static disorder, and inelastic scat-
tering properties.

XAFS analysis is consequently widely used to fingerprint 
materials and to discriminate between possible local struc-
ture arrangements. XAFS measurements have also been used 
to measure Debye–Waller thermal disorder parameters, and 
recently have been demonstrated as an effective technique for 
measuring electron inelastic mean free paths (IMFPs) [1]. In 
order to maximize information content and absolute accuracy, 
all of these applications demand not only highly meticulous 
experimental arrangements, but also robust ab initio theoreti-
cal modelling.
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This work focuses on advanced full-potential cluster mod-
elling of XAFS, with particular emphasis on long energy-
range calculations. The applicability of such an approach has 
only recently been demonstrated for metallic copper, a study 
which represented the first full-potential cluster computation 
of an entire XAFS spectrum [2]. This followed work demon-
strating that accurate determination of the photoelectron IMFP 
is one of the most important considerations for maximizing 
agreement with experiment in the information-rich near-edge 
(XANES) region of the absorption spectrum [3].

We present here an improved theoretical model of inelas-
tic electron scattering utilizing a many-pole dielectric theory 
incorporating both Lindhard [4] and Mermin [5] type func-
tions to describe the dielectric response function of the scat-
tering material. This enables a calculation that is inclusive of 
second-order excitation (e.g. plasmon) broadening, coupled 
for the first time with a precise representation of band struc-
ture effects in order to produce highly accurate IMFPs.

These developments are applied to elemental molybdenum 
in order to produce an accurate, physical, and robust determi-
nation of the x-ray absorption spectrum over the entire XAFS 
range and beyond—spanning up to 1.5 keV from the K-edge. 
This represents the most critical test of the theory currently 
available, in light of the exceptionally high absolute accu-
racy with which molybdenum XAFS have been measured 
[6]. These measurements were performed using the x-ray 
extended range technique, a method routinely demonstrated 
as providing uncertainties more than an order of magnitude 
lower than conventional XAFS measurements [7].

2. The electron inelastic mean free path

2.1 Theory

We focus firstly on the theory of the electron IMFP, which is 
most commonly expressed in terms of the complex dielectric 
function of the absorbing material, ϵ(q, ω), following
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where, upon scattering, the electron deposits energy ℏω 
and momentum ℏq into the scattering material, and the limits 
of the momentum integral are given kinematically by
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The terms a0 and m are the Bohr radius and electron mass, 
while the Fermi energy, EF, is defined relative to the bottom of 
the conduction band. The term Im[(−1)/ϵ(q, ω)] is referred to 
as the electron energy loss function (ELF), and can be inter-
preted as a relative probability of scattering with a particular 
energy and momentum transfer (q, ω). This quantity, or equiv-
alently the dielectric function ϵ(q, ω) = ϵ1(q, ω) + iϵ2(q, ω), is 
the principal determinant of the IMFP.

The electron ELF is difficult to calculate directly, and is 
most commonly obtained via some variation of the optical 
data model of Penn [8]. This model utilizes a determination 

of ELF in the optical limit, i.e. where q  →  0, followed 
by an extension algorithm to obtain the function at finite 
values of q following the expected dispersion relation of 
plasmon and other electronic excitations. In this work, we 
implement for the first time a version of this technique that 
includes a full lifetime-dependent representation of plas-
mon excitations, in addition to a precise reproduction of 
an ab initio calculation of the optical ELF from density 
functional theory (DFT).

The first component of this calculation-the optical ELF-
is evaluated using the band structure package WIEN2k [9]. 
This package invokes a self-consistent field algorithm to solve 
the Kohn–Sham equation describing the electronic poten-
tial and eigenstates in a periodic condensed matter system. 
These eigenstates can then be used to calculate a complete set 
of momentum matrix elements describing optical transition 
probabilities in the dipole approximation, following
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The matrix elements define uniquely the electronic response 
of the condensed matter system to photon perturbations, and 
so can be used to express the optical dielectric function ϵ (0, ω). 
Specifically, following [10], they provide a modulation to 
the Lindhard dielectric function, describing the response of a 
homogeneous gas of charge [4]:

   (4)

where f0(k) is the Fermi distribution. This enables a direct 
theoretical determination of the optical ELF Im[(−1)/ϵ (0, ω)] 
from DFT [11]. Following this, we must then extend the opti-
cal ELF to a full momentum-dependent ELF according the 
expected dispersion relation of plasmon excitations.

This task has been undertaken by a number of authors 
using slightly different variations of optical data modelling, 
involving classical or empirical plasmon functions based on 
Drude–Lorentz theory [12, 13], lossless partial plasmon poles 
based on Lindhard theory [14, 15], or unconstrained lifetime-
dependent many-pole models based on Mermin theory [16, 17].  
Here we undertake for the first time a hybrid approach utiliz-
ing both Mermin and Lindhard components in order to pro-
duce a constrained loss spectrum in the optical limit, coupled 
with lifetime broadening at increased values of momentum 
transfer ℏq.

To do this we must clearly define both the Lindhard and 
Mermin theories of plasmon excitations and their relation-
ship to one another. While equation (4) is a direct statement 
describing the dielectric behaviour of modulated plasmons 
under the Lindhard theory, it is useful to express the Lindhard 
dielectric function in a more direct way following [4]
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where
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This is expressed in term of dimensionless parameters z 
and u, which are given by

ω=u
qv

,
F 

(7)
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The vF and qF terms are the Fermi velocity and momen-
tum, respectively. Although this formulation is mathemati-
cally complex, the most important aspect of the Lindhard 
theory to this discussion is that although it is well defined for 
a quantized gas of charge, it does not include any account of 
lifetime broadening, or second-order energy loss due to the 
inelastic scattering of plasmons. This can be convenient in a 
sense, because it gives rise to a collection of delta functions 
in the optical ELF, which can be summed with appropriate 
amplitude parameters in order to completely reproduce any 
optical ELF determined via DFT [18]. In this way, one can 
readily build a momentum-dependent electron ELF following 
the natural q-dependence of the Lindhard function, which also 
perfectly replicates the result from DFT at q = 0. Specifically, 
one can write
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However, such an approach is also unphysical. The problem 
of implementation of lifetime broadening into the Lindhard 
theory is solved by the alternative use of the Mermin dielectric 
function, which can be written in terms of the Lindhard func-
tion following [5]

 

(11)

where γ is now a broadening parameter associated with 
a plasmon lifetime τ  =  1/γ. The Mermin function has sev-
eral elegant properties, including reducing to the Lindhard 
expression for γ → 0, reducing to the classical Drude theory 
for q  →  0, and satisfying optical sum rules (specifically, 
Kramers–Kronig and f-sum rules) [19] for all values of γ. The 
implementation of Mermin terms instead of Lindhard terms 
represents an improved physical modelling of plasmon exci-
tations, however it comes at the cost of uniqueness. Due to 
the ability to choose values of both excitation amplitudes and 

broadening terms, it is possible to approximately reproduce 
optical loss data from DFT (or other sources) using a number 
of different parameter sets. Further, the use of Mermin terms 
typically means that the optical ELF is not reproduced in the 
precise manner that is possible when using Lindhard terms.

2.2 Results

The problem of ambiguity in the Mermin parametrization can 
only be alleviated through careful consideration of the major 
peaks visible in the optical loss spectrum, and ultimately this 
results in a small but inevitable variability in the theory. The 
problem of imprecise matching to optical ELF data, however, 
can be solved entirely by utilizing a hybrid approach with 
both Mermin and Lindhard type terms. In figure 1 we illus-
trate the optical ELF for molybdenum, determined via DFT 
(solid black curve), along with a collection of seven Mermin 
functions approximating the electronic excitations that make 
up the spectrum (dot–dashed green curves). The sum of the 
Mermin functions is also shown (dashed red curve).

This representation is quite effective in reproducing the 
optical ELF, covering more than 90% of the losses with 
only a few discrete components. Typically when using the 
Mermin approach, authors will attempt to match the optical 
ELF as closely as possible in this fashion, and then follow 
an equivalent of equations (10) and (11) to produce the elec-
tron ELF and subsequent IMFP. By contrast, we implement a 
close fitting set of Mermin parameters that (where possible) 
do not exceed the total losses of the optical ELF from DFT, 
and account for superfluous losses via a Lindhard representa-
tion. Therefore, we can build the optical ELF as a sum of both 
Mermin and Lindhard parts, as shown in figure 2. This allows 
us to faithfully reproduce the DFT result without abandoning 
the implementation of plasmon lifetime broadening terms.

The Lindhard part of the spectrum (dot–dashed blue curve) 
includes the more detailed oscillations not readily represented 
with Mermin components, and likely to contribute little in 
terms of the broadening effect on the IMFP. A small area of 
the Lindhard part, comprising less than 1% of the total spec-
trum, is negative. This is designed to approximately negate 
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Figure 1. Optical ELF for molybdenum, calculated using density 
functional theory (solid black line), along with a Mermin fit to the 
spectrum (dashed red). Dot–dashed green curves correspond to 
individual Mermin components, representing assigned plasmon 
resonances.
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the effect of Mermin terms that implement higher losses than 
indicated by the DFT result. The uncertainty of this on the 
electron ELF is confidently estimated to be less than 0.2%.

Figure 2 also includes an optical ELF determined experi-
mentally and reported in the oft-cited optical data compila-
tion of Palik [20] (dotted green curve), which is commonly 
used for IMFP determinations with the optical data model 
[14]. This result is dramatically different from our DFT 
result. However, it is not unusual for a lack of consistency 
to be seen in experimental optical ELF data in this energy 
range [11]. We include this result to demonstrate the effect 
of not only a hybrid plasmon representation, but also of 
purely theoretical determinations of the optical spectrum on 
the resulting IMFP. A similar study on the effect of DFT on 
calculated IMFPs was recently conducted for copper, with 
the theoretical prediction leading to significant improve-
ments observed [21].

The full electron ELF calculated for molybdenum is illus-
trated in figure 3 in terms of the Mermin (red surface) and 
Lindhard (blue mesh) parts. The evolution of peak energies as 
a function of momentum transfer is similar for both, however 
the Mermin part of the spectrum loses its distinctive shape far 
more rapidly than the Lindhard part.

The effect of the increased broadening apparent in the 
Mermin theory is that more of the loss spectrum remains in 
the low energy region as q is increased, leading to higher 
values of the integrand of equation (1) at low energies [18]. 
Accordingly, we expect the inclusion of Mermin broadening 
to lower the electron IMFP. Similarly, by comparison with the 
experimental optical ELF shown in figure 2, we expect the 
use of a DFT ELF to itself result in extra losses and hence, 
lower IMFP values in the energy range studied. In figure 4 
we examine these considerations with a range of IMFP values 
determined from different approaches.

Firstly we show the IMFP resulting from use of a purely 
Lindhard type representation of the experimental optical ELF 
given by [20] (dotted green curve). We then apply the same 
approach to the optical ELF from DFT (dot–dashed blue 
curve), before finally including Mermin terms into our rep-
resentation, as described (dashed red curve). Also shown for 

comparison is a recent measurement of the electron IMFP for 
molybdenum determined via analysis of the XAFS measure-
ments of de Jonge et al [22]. The experimental curve represents 
the IMFP values best used to achieve maximum agreement 
between XAFS theory and experiment, with respect to the 
oscillatory part of the absorption spectrum.

Figure 4 shows that the implementation of optical ELF 
data from DFT indeed results in a significant reduction in the 
IMFP beyond around 50 eV, and a very significant reduction 
after 100 eV. The effect arises somewhat higher in energy than 
the regions where the optical ELFs diverge, due to the disper-
sion relation observable in figure 3. At 120 eV, the difference 
between theory and experiment is roughly halved by the use 

Figure 2. Optical ELF for molybdenum, showing a comparison 
between the result from DFT (solid black line) and the experimental 
tabulation of Palik (dotted green line) [20]. Also shown are the 
Mermin (dashed red) and Lindhard (dot–dashed blue) partitions 
used to build the optical ELF by fitting to the DFT result.
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mesh). The evolution of the loss structure at higher momentum 
transfer is apparent, with the Mermin structure broadening and 
becoming less defined more quickly than that of the Lindhard 
structure. These curves are summed to produce the total electron 
ELF, which matches the optical ELF from DFT for k = 0, and can 
be integrated to find the inverse IMFP.

Figure 4. Electron IMFPS for molybdenum. The solid black curve 
is an experimental result produced using a fit to the solid-state 
(oscillatory) component of the measured XAFS spectrum [22]. 
The dotted green curve uses typical theory methods, involving a 
Lindhard extension to experimental optical data tabulated by Palik. 
The dot–dashed blue curve instead utilizes optical data from DFT 
with a Lindhard model, while the dashed red curve uses a hybrid 
model involving both Mermin and Lindhard components in the 
finite-q extension of the DFT ELF, as shown in figure 3.
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of DFT alone. A similar result has also been demonstrated 
recently for studies of the IMFP in copper [21].

The inclusion of plasmon broadening via a Mermin repre-
sentation of the ELF also provides a significant contribution to 
a reduction in the IMFP. In this case the reduction is across all 
energies, and again at 120 eV the difference between theory and 
experiment is almost halved. Since the optical ELF of molybde-
num is characterized by particularly tall, thin peaks, the effect 
of broadening terms would be greater still in many other mate-
rials where particularly broad loss spectra are seen; notable 
examples include silver [11], gold [16], and copper [18].

Given that the experimental IMFP of figure 4 represents 
the best possible values for agreement between XAFS theory 
and experiment, the improvement in agreement with theoreti-
cal IMFP values from the optical data modelling is strongly 
important for XAFS analysis. We now turn our attention to the 
specifics of XAFS modelling using the improved IMFP the-
ory, coupled with advancements in finite-difference method 
cluster calculations.

3. X-ray absorption fine structure

3.1 Theory

Our calculations of XAFS are performed via implementation 
of an explicit finite-difference method modelling of the final-
state wave function of an excited photoelectron in a small 
cluster. This is done chiefly through the package FDMNES 
(finite-difference method for near-edge structure) [23], how-
ever with a number of extensions and, in particular, a detailed 
additional implementation of recent developments in the the-
ory of inelastic electron scattering as described.

FDMNES calculations treat the problem of XAFS in a rel-
atively general way, starting from the basic need to determine 
the optical transition matrix elements which, in the quadrupo-
lar approximation, may be written as

ψ ψ= ∣ + · ∣M
i

k r(1
2

) ,gf f g

 
(12)

where k is the photon wave vector polarized in the ϵ direc-
tion, and ψg and ψf are the initial and final states. The transi-
tion amplitudes are then summed to give the absorption cross 
section σ following
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where α is the fine structure constant, ℏω the energy of the 
incident photon, and Ef, Eg the final and initial state energies. 
The initial state is that of an electron bound to an atomic core 
orbital, and therefore relatively well known. It is the final state 
that is calculated using the FDM.

The FDM essentially solves a large number of simultane-
ous linear equations linking the values of the wave functions 
ψi, and potentials Vi, at points i in a defined grid in real space. 
The Laplacian operator needed to solve the Schrödinger equa-
tion is approximated using a fourth-order polynomial and may 
be written as [23]
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Here ϵ = + or −, and ψ ϵ
j  and ψ ϵϵ

j  are the first and second near-
est neighbouring grid points to i in the direction ϵj. Particular 
note must be made that for this equation h is defined as the 
interpoint distance, or distance between adjacent grid points, 
and not Planck's constant. With this approximated Laplacian, 
the Schrödinger equation is expressed in discretized form, fol-
lowing [23], as

∑ψ ψ−∇ + − + −∇ =( )V E( ) 0,i i
j

j
2 2

 
(15)

where again ψj refers to wave function values at grid points 
neighbouring i. The values of the wave function can then be 
determined for all points i according to the potential values 
Vi. These potentials are determined via an independent atom 
approximation [24], utilizing the Coulomb potential produced 
by defined ground state electron densities plus the Hedin–
Lundqvist exchange-correlation potential [25]. Although not 
inherently self-consistent, this approach is robust and widely 
applicable as, unlike with LAPW approaches, it does not 
require a periodic potential and so can be applied to nano 
materials and other small clusters.

The photoelectric absorption spectrum calculated via 
the FDMNES package must be obtained using very precise 
computational parameters, particularly with regards to clus-
ter size and density, in order to yield accurate results at ener-
gies far beyond the near-edge region (i.e. E ≫ 100 eV) [2]. 
In this work, the results are also subject to a post-processing 
routine to implement a range of additional physical pro-
cesses including core-state lifetime broadening, thermal and 
structural disorder, outer orbital absorption, x-ray scattering, 
and inelastic photoelectron scattering [3]. The main focus of 
this work, the inelastic photoelectron scattering, appears in 
XAFS spectra as an energy-dependent Lorentzian convolu-
tion of width Γλ(E), principally determined by the electron 
IMFP λ(E):

Γ
λ

= ℏ
λ E

E

E

m
( )

( )

2

e
 

(16)

3.2 Results

In figure 5 we show the mass attenuation coefficient for 
molybdenum calculated using the extended FDM procedure 
with implementation of inelastic photoelectron scattering 
via the described DFT/Mermin model of IMFPs (dashed red 
curve). In addition, we plot a version of the theory utilizing the 
fitted (experimental) values for the IMFP from figure 4 (solid 
black curve). The measurement of the mass attenuation coef-
ficient (purple diamonds) is from the work of de Jonge et al [6], 
and possesses uncertainties of around 0.03% over much of the 
energy range of interest.

There exists a significant offset between the theoretical and 
experimental results, which is commonplace for absorption 
determinations close to ionization edges (e.g. [26–28]), and 
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has been shown using alternate XAFS modelling recently for 
solid molybdenum [29]. This problem is not currently well 
understood, but is sometimes artificially removed via the use 
of an empirical spline, with the knowledge that a smooth 
background function does not materially change conclusions 
regarding the information from XAFS.

The important aspect of our result is that the oscillatory 
structure has been quite well reproduced by the theoreti-
cal modelling. The black curve represents the most con-
sistent result possible with experiment using ideal values 
for the electron IMFP, and so deviates somewhat from our 
result using DFT/Mermin theory at low energies. This is 
due to the significant differences in IMFPs in the low energy 
region, which we believe may be attributed to the absence 
of exchange and correlation effects in the Mermin dielec-
tric theory (see, for example [21, 30]), or excitonic/electron 
screening effects [31]. Towards the higher end of the spec-
trum, these differences appear to be minor, and at first glance 
may seem insignificant.

Such an appearance can be misleading, however, as the 
oscillatory structure is the molybdenum absorption spec-
trum has been quantified to exceedingly high accuracy. In 
figure 6 we show the differences in attenuation predicted by 
theoretical modelling using the different IMFP values given 
in the previous section. For example the dot–dashed green 
curve shows the difference in the XAFS results from using 
either the Lindhard model coupled to Palik’s compiled ELF 
data, or the Mermin model coupled to ELF data from DFT. 
The purple lines represent the relative level of uncertainty in 
the experimental measurements in this region. The abscissa 
is given in terms of the photoelectron wave number k fol-
lowing common practise in XAFS analysis literature, how-
ever the scale is, as before, bounded at 120 eV above the 
absorption edge.

This demonstrates that despite the relatively small mag-
nitudes of deviation, the effect of changing the IMFP values 
within the theory is quite significant with respect to the experi-
mental uncertainty. Further developments are clearly needed 
in the lower energy part of the spectrum, however we can see 

that the improvements enabled by consideration of DFT-based 
optical data and a properly broadened electron ELF result in 
XAFS calculations that are more accurate by 2 to 5 σ for k 
values above 4 Å−1, corresponding to around 50 eV.

We can extend our XAFS calculation to greater energies 
by utilizing other tabulations of IMFP data [14] which, while 
evaluated using the less physical Lindhard model, will con-
verge to the Mermin result at sufficiently high energies [18]. 
Coupled with computational developments and the post-pro-
cessing implementation of other physical effects as stated, it 
is possible to utilize the FDM to generate theoretical mass 
attenuation spectra over an energy range exceeding the visible 
region of XAFS. We demonstrate this outcome in figure 7, 
reporting for the first time in molybdenum a consistent theo-
retical determination of the entire XAFS spectrum utilizing a 
full-potential model.

Figure 6. Triangular comparison of differences in the oscillatory 
part of the absorption spectrum, χ(k), for molybdenum XAFS 
using theoretical modelling with different values of the electron 
IMFP. The marked purple components reflect the relative level of 
uncertainty in the measured data of de Jonge et al, demonstrating 
the significance of these differences. In particular, we note that 
while little significance is observed at very low values of k, towards 
the end of our plotted range the effect of our refinements in IMFP 
determination (dot–dashed green curve) is seen to result in changes 
in the XAFS spectrum of several sigma.
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We see that the oscillatory structure is qualitatively 
extremely well reproduced up to at least 400  eV above the 
absorption edge. This range is nearly an order of magnitude 
greater than the range of consideration typical for FDM type 
investigations of XAFS without the extension algorithms that 
we have implemented. The spectrum is extended up to 1.5 keV 
from the edge (corresponding to k  ≈  20), and in the higher 
energy region we see that some small oscillations remain in 
the experimental result that are absent from the theory. We 
speculate that this problem may be partly the result of an insuf-
ficient level of sophistication in our treatment of atom-specific 
thermal parameters [3], and perhaps partly the result of conver-
gence issues related to the size of the highly dense cluster mod-
elling increasingly required at high photoelectron energies.

An interesting consideration separate from the XAFS 
analysis is the nature of the smooth offset between theory 
and experiment, which decays steadily for the first 400 eV, 
but thereafter reduces quite slowly, resulting in a lack of 
observed convergence between the atom-like spectra charac-
teristic at energies well beyond the XAFS region. A previous 
study of copper using the FDM demonstrated convergence 
between theory and experiment around 400–500 eV above 
the absorption edge [2]. The physical nature of this offset 
is not well understood, but as stated he effect is common in 
XAFS analysis, resulting in the standard use of empirical 
splines rather than ab initio atomistic theories in order to 
extract the oscillatory components of measured XAFS spec-
tra. Although we are unable to make specific conclusions 
about the nature of the effect simply from this result, we 
hope that by adding to the range of elements studied in this 
way that patterns may be observed that can light the way on 
this difficult and important problem.

4. Conclusions

We have demonstrated the significant improvement to the 
theory of inelastic electron scattering via the IMFP param-
eter obtained through explicit consideration of well con-
strained, self-consistent ab initio modelling of the optical 
energy loss function, coupled with physical modelling of 
second-order (plasmon) lifetime effects in the electronic ELF. 
These improvements have been shown to reduce the disparity 
between theory and experiment by up to 75% at critical ener-
gies relevant to precision XAFS investigations.

The importance of high-accuracy theoretical modelling 
of IMFPs has been demonstrated in terms of the direct sig-
nificance in molybdenum, with improvements of several σ 
observed in the calculated XAFS spectrum as a direct result 
of our IMFP analysis. Further, calculations of mass attenu-
ation coefficients for molybdenum using these and other 
developments have been demonstrated over an energy range 
of 1.5 keV from the K absorption edge, representing the most 
robust test yet of full-potential solid-state absorption theory.

These results confirm not only the validity and accuracy 
of the FDM approach, but provide further evidence of its ver-
satility over a wide energy range encompassing all observ-
able XAFS. They also directly add to a growing body of work 

demonstrating the long-energy range relationship between 
experimental and theoretical determinations of optical absorp-
tion—a fundamental area of investigation with strong need for 
additional data and analysis.

This work is directly applicable to a range of structural, 
chemical, and electronic investigations due to the versatil-
ity of both the XAFS technique and of the FDM modelling 
scheme. The use of a finite cluster allows consideration of 
nano materials, amorphous materials, catalytic centres or 
localized defects. The use of a full-potential model permits 
high accuracy for multi-elemental materials, particularly in 
the near-edge region, commonly unattainable by methods 
with approximated or unphysical potential arrangements. Our 
results and developments demonstrate the robust use of this 
approach for analysis of XAFS over an arbitrary energy range 
within a single consistent theoretical framework.

Acknowledgments

The authors acknowledge the work of Y Joly, Z Barnea,  
M D de Jonge, N A Rae and J L Glover, and their helpful 
contribution to the development of ideas important to this 
research.

References

	 [1]	 Bourke J D and Chantler C T 2010 Phys. Rev. Lett. 104 206601 
	 [2]	 Bourke J D and Chantler C T 2010 Nucl. Instrum. Meth. Phys. 

Res. A 619 33 
	 [3]	 Bourke J D, Chantler C T and Witte C 2007 Phys. Lett. A  

360 702 
	 [4]	 Lindhard J 1954 Dan. Vidensk. Selsk. Mat. Fys. Medd. 28
	 [5]	 Mermin N D 1970 Phys. Rev. B 1 2362 
	 [6]	 de Jonge M D, Tran C Q, Chantler C T, Barnea Z, Dhal B B, 

Cookson D J, Lee W and Mashayekhi A 2005 Phys. Rev. A 
71 032702 

	 [7]	 Chantler C T 2009 Eur. Phys. J. Spec. Top. 169 147 
	 [8]	 Penn D R 1987 Phys. Rev. B 35 482 
	 [9]	 Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J  

2001 WEIN 2K: An Aujmented Plane Wave + Local 
 Orbitals (Vienna University of Technology) 

	[10]	 Ambrosch-Draxl C and Sofo J O 2006 Comput. Phys. 
 Commun. 175 1 

	[11]	 Werner W S M, Glantschnig K and Ambrosch-Draxl C 2009 
J. Phys. Chem. Ref. Data 38 1013 

	[12]	 Kwei C M, Chen Y F, Tung C J and Wang J P 1993 Surf. Sci. 
293 202 

	[13]	 Ding Z-J and Shimizu R 1989 Surf. Sci. 222 313 
	[14]	 Tanuma S, Powell C J and Penn D R 2011 Surf. Interface 

Anal. 43 689 
	[15]	 Sorini A P, Kas J J, Rehr J J, Prange M P and Levine Z H 2008 

Phys. Rev. B 74 165111 
	[16]	 Denton C D, Abril I, Garcia-Molina R, Moreno-Marin J C and 

Heredia-Avalos S 2008 Surf. Interface Anal. 40 1481 
	[17]	 Abril I, Garcia-Molina R, Denton C D, Perez-Perez F J and 

Arista N R 1998 Phys. Rev. A 58 357 
	[18]	 Bourke J D and Chantler C T 2012 J. Phys. Chem. A 116 3202 
	[19]	 Smith D Y and Shiles E 1978 Phys. Rev. B 17 4689 
	[20]	 Palik E D 1998 Handbook of Optical Constants of Solids III 

(New York: Academic) 
	[21]	 Chantler C T and Bourke J D 2014 J. Phys. Chem. A 118 909
	[22]	 Chantler C T and Bourke J D 2010 J. Phys. Chem. Lett. 1 2422 

J. Phys.: Condens. Matter 26 (2014) 145401

http://dx.doi.org/10.1103/PhysRevLett.104.206601
http://dx.doi.org/10.1103/PhysRevLett.104.206601
http://dx.doi.org/10.1016/j.nima.2009.10.121
http://dx.doi.org/10.1016/j.nima.2009.10.121
http://dx.doi.org/10.1016/j.physleta.2006.08.084
http://dx.doi.org/10.1016/j.physleta.2006.08.084
http://dx.doi.org/10.1103/PhysRevB.1.2362
http://dx.doi.org/10.1103/PhysRevB.1.2362
http://dx.doi.org/10.1103/PhysRevA.71.032702
http://dx.doi.org/10.1103/PhysRevA.71.032702
http://dx.doi.org/10.1140/epjst/e2009-00985-8
http://dx.doi.org/10.1140/epjst/e2009-00985-8
http://dx.doi.org/10.1103/PhysRevB.35.482
http://dx.doi.org/10.1103/PhysRevB.35.482
http://dx.doi.org/10.1016/j.cpc.2006.03.005
http://dx.doi.org/10.1016/j.cpc.2006.03.005
http://dx.doi.org/10.1063/1.3243762
http://dx.doi.org/10.1063/1.3243762
http://dx.doi.org/10.1016/0039-6028(93)90314-A
http://dx.doi.org/10.1016/0039-6028(93)90314-A
http://dx.doi.org/10.1016/0039-6028(89)90362-2
http://dx.doi.org/10.1016/0039-6028(89)90362-2
http://dx.doi.org/10.1002/sia.3522
http://dx.doi.org/10.1002/sia.3522
http://dx.doi.org/10.1103/PhysRevB.74.165111
http://dx.doi.org/10.1103/PhysRevB.74.165111
http://dx.doi.org/10.1002/sia.2936
http://dx.doi.org/10.1002/sia.2936
http://dx.doi.org/10.1103/PhysRevA.58.357
http://dx.doi.org/10.1103/PhysRevA.58.357
http://dx.doi.org/10.1021/jp210097v
http://dx.doi.org/10.1021/jp210097v
http://dx.doi.org/10.1103/PhysRevB.17.4689
http://dx.doi.org/10.1103/PhysRevB.17.4689
http://dx.doi.org/10.1021/jz100776h
http://dx.doi.org/10.1021/jz100776h


C T Chantler and J D Bourke 

8

	[23]	 Joly Y 2001 Phys. Rev. B 63 125120 
	[24]	 Joly Y, Cabaret D, Renevier H and Natoli C R 1999 Phys. Rev. 

Lett. 82 2398 
	[25]	 Hedin L and Lundqvist B I 1971 J. Phys. C: Solid State Phys. 

4 2064 
	[26]	 Chantler C T 1995 J. Phys. Chem. Ref. Data 24 71 
	[27]	 Chantler C T 2000 J. Phys. Chem. Ref. Data 29 597 

	[28]	 Scofield J H 1973 Lawrence Livermore National Laboratory 
Report UCRL-51326

	[29]	 Kas J J, Rehr J J, Glover J L, and Chantler C T 2010 Nucl. 
Instrum. Meth. Phys. Res. A 619 28 

	[30]	 Nagy I and Echenique P M 2012 Phys. Rev. B 85 115131 
	[31]	 Caliebe W A, Soininen J A, Shirley E L, Kao C C and 

Hämäläinen K 2000 Phys. Rev. Lett. 84 3907 

J. Phys.: Condens. Matter 26 (2014) 145401

http://dx.doi.org/10.1103/PhysRevB.63.125120
http://dx.doi.org/10.1103/PhysRevB.63.125120
http://dx.doi.org/10.1103/PhysRevLett.82.2398
http://dx.doi.org/10.1103/PhysRevLett.82.2398
http://dx.doi.org/10.1088/0022-3719/4/14/022
http://dx.doi.org/10.1088/0022-3719/4/14/022
http://dx.doi.org/10.1063/1.555974
http://dx.doi.org/10.1063/1.555974
http://dx.doi.org/10.1063/1.1321055
http://dx.doi.org/10.1063/1.1321055
http://dx.doi.org/10.1016/j.nima.2010.01.024
http://dx.doi.org/10.1016/j.nima.2010.01.024
http://dx.doi.org/10.1103/PhysRevB.85.115131
http://dx.doi.org/10.1103/PhysRevB.85.115131
http://dx.doi.org/10.1103/PhysRevLett.84.3907
http://dx.doi.org/10.1103/PhysRevLett.84.3907

