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Momentum-dependent lifetime broadening of electron energy loss spectra:
Sum rule constraints and an asymmetric rectangle toy model
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Electron energy loss spectra enable a detailed quantification of the electronic loss mechanisms in a target solid,
particularly in the low-energy region dominated by plasmon excitations. Models of the electronic response in
condensed-matter systems are usually derived from free-electron gas or jellium models, which commonly neglect
to account for the lifetime broadening of individual plasmon and single-electron excitations in a constrained,
physical manner. This can lead to potentially significant errors in electron energy loss spectra and electron
inelastic mean-free-path (IMFP) calculations. We develop a toy model of plasmon and single-electron excitations
that incorporates lifetime broadening for each excitation in an energy- and momentum-dependent fashion.
The model is physically constrained using optical and electronic sum rules. We demonstrate the necessity of
asymmetric excitation broadening, and show that causally permitted variations in the broadening function can
have a significant impact on the dielectric response of the material. Our developments are applied to molybdenum,
and compared with previous modeling and high-precision experimental results for the IMFP at electron energies
below 120 eV.
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I. INTRODUCTION

Electron energy loss spectroscopy is a powerful analytic
tool that utilizes the inelastic scattering of energetic electrons
in order to probe detailed structural and chemical information
about a target material [1]. Related techniques, such as x-ray
absorption fine-structure spectroscopy [2], Auger electron
spectroscopy [3], and electron microscopy [4], also rely
heavily on detailed knowledge of the inelastic scattering of
electrons, in particular the electron inelastic mean free path
(IMFP), in order to accurately probe material properties. Re-
cent investigations have demonstrated the particularly critical
nature of low-energy electron scattering (<100 eV) in all
of these techniques [5,6]. However, established theoretical
and experimental methods for obtaining inelastic electron-
scattering data have typically been reliable only at much higher
energies [7].

We are therefore motivated to investigate the extension
of theoretical models for inelastic electron scattering in the
low-energy regime. We focus on a particular area of weakness
in current models—the detailed representation of bulk- (plas-
mon) and single-electron excitations in the electron energy loss
function or, equivalently, the momentum-dependent dielectric
function [8].

Existing models of these excitations in bulk solids, com-
monly used in the determination of electron energy loss
spectra, feature well-defined dispersion relations that define
the resonant energy of each particular excitation as a function
of its momentum [9,10]. This allows excitations triggered
by electron scattering events to be inferred from known
optical excitations. The dispersion relations vary significantly
between models, however, and may depend on the final-state
lifetime of the corresponding optical excitation [11]. This
lifetime is always considered to be fixed for a given excitation
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across all momenta, despite the very likely reality of shorter
lifetimes for fast-moving particles.

This work utilizes a sum rule constrained toy model of
momentum-dependent plasmon broadening to investigate the
potential significance of a momentum-dependent excitation
lifetime on electron energy loss spectra and on the electron
IMFP. The model is applied to an idealized free-electron gas
system, and then to elemental molybdenum in order to compare
with recent high-precision experimental IMFP investigations
[12].

II. THE ASYMMETRIC RECTANGLE MODEL

A. Optical data models

The electron energy loss function (ELF) provides a quan-
tification of the probability of an energetic electron depositing
energy �ω and momentum �q into a condensed-matter system,
resulting in plasmon or single-electron excitations. The ELF
is defined as the imaginary part of the negative inverse of the
complex dielectric function ε(q,ω), i.e.,

ELF = Im

[ −1

ε(q,ω)

]
. (1)

This expression is the principal determinant of the electron
inelastic scattering cross section σ , and of the electron IMFP
λ [13]. The IMFP may be evaluated directly by integration of
the ELF following [14]

λ(E)−1 = �

aoπE

∫ E−EF
�

0

∫ q+

q−

1

q
Im

[ −1

ε(q,ω)

]
dqdω, (2)

where E is the energy of the incident electron. The terms a0

and m are the Bohr radius and electron mass, while the Fermi
energy EF is defined relative to the bottom of the conduction
band. The limits of the momentum integral are given by

q± =
√

2mE

�2
±

√
2m

�2
(E − �ω). (3)
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Determination of the electron IMFP requires knowledge of
the ELF of the scattering material, but in practice this is difficult
to evaluate directly. Most commonly, the ELF is determined in
the optical limit ε(0,ω) via optical transmission or reflection
measurements [15], electron energy loss spectroscopy (EELS),
reflection EELS (REELS) [16], or inelastic x-ray scattering
(IXS) [17]. Recently, theoretical determinations have also
become possible via computational techniques such as density
functional theory (DFT) [18].

Given data for the optical part of the ELF, one can interpret
the spectrum as a sum of components corresponding to
excitations in a free-electron gas (FEG). In this way, the solid
can be modeled as a collection of free-electron gases with
relative contributions weighted by an amplitude term Ai [19].
The ELF can then be expressed, in the optical limit �q → 0,
as

Im

[ −1

ε(0,ω)

]
data

=
∑

i

AiIm

[ −1

ε(0,ω; ωp = ωi)

]
FEG

, (4)

where Im[ −1
ε(0,ω;ωp=ωi )

]FEG is the optical ELF for a free-electron
gas with plasma frequency ωp = ωi . Such an ELF will consist
of a single resonance peak with energy �ωi and, in the case of
a lossless gas, may be given by a δ function. By assigning the
amplitude parameters Ai to match the optical data, we may
build a momentum-dependent ELF using an existing model
for a free-electron gas:

Im

[ −1

ε(q,ω)

]
=

∑
i

AiIm

[ −1

ε(q,ω; ωp = ωi)

]
FEG

. (5)

The model function describing εFEG(q,ω) (or, equivalently,
Im[ −1

ε(q,ω) ]FEG) is typically one of a few popular literature
models such as the Drude model [20], Lindhard model [21],
or Mermin model [22]. Some of these models (notably the
Drude and Mermin) explicitly consider a broadening effect
arising from the finite lifetime of the resonant excitation, and
will therefore define components of the ELF in terms of their
amplitude Ai , optical plasma frequency ωi , and lifetime broad-
ening γi . The broadening parameters are almost always held as
constants, even though the lifetime broadening of a plasmon
or single-electron excitation is, in fact, likely to be variable
based on its energy and momentum. Some investigations have
demonstrated that an explicitly momentum-dependent broad-
ening function γi(q) may significantly improve agreement
with experimental data [23]; however, such an approach is
not generally used, as the correct form of the momentum
dependence is not presently clear.

The inclusion of the broadening term γi also complicates the
data-matching procedure described by Eq. (4). When γi = 0, δ
functions may be uniquely defined with amplitudes matching
the optical ELF data. With excitations of finite width, however,
there potentially exist many possible ways to fit the optical
spectrum, and thus the parameters Ai , ωi , and γi are not
uniquely defined. This may result in a large range of potential
values for the ELF at high values of momentum transfer �q.

B. Excitation broadening and sum rules

These problems may be addressed with the implementation
of a causally constrained momentum-dependent lifetime γi(q)

assigned to each excitation. In order to evaluate the impact
of such a parameter on the ELF, we may investigate a
relatively simple toy model of the free-electron gas compo-
nents, constrained by the Thomas-Reiche-Kuhn and Kramers-
Kronig sum rules [24]. The Thomas-Reiche-Kuhn rule, also
commonly known as the f -sum rule, is given by

π

2
ω2

i ≈
∫ ∞

0
ωIm

[ −1

ε(ω)

]
dω. (6)

This rule is generally applicable to all values of momentum
transfer �q, and is commonly used to evaluate the consistency
of measured and calculated optical dielectric data [25]. The
expression we are using applies to a single oscillator, or a
free-electron gas with a well-defined resonance frequency ωi .
For a general material with several resonance peaks, the plasma
frequency must be replaced using ωi = (4πne2/m)1/2, where
n is the density of electrons in the material. In this work, we
are interested solely in the momentum dependence of the ELF,
and so we will assume that any optical data that we use are
already compliant with the f -sum rule. This allows us to focus
only on ensuring that the value of the f sum, defined by the
right-hand side (RHS) of Eq. (6), is self-consistent across all
momenta.

The Kramers-Kronig, or KK-sum rule, is given by

1 + Re

[ −1

ε(q,0)

]
= 2

π

∫ ∞

0

1

ω
Im

[ −1

ε(q,ω)

]
dω. (7)

This rule is also applicable across all momenta; however,
the left-hand side of the expression can be ill defined for q �= 0.
We therefore make an approximation following the Drude
dielectric theory, which represents the real component of the
inverse dielectric function in terms of ωq , the resonant or peak
energy of an excitation at momentum �q [26]:

Re

[ −1

ε(q,0)

]
≈ ω2

i

ω2
q

− 1. (8)

This allows us to rewrite the KK-sum rule as

π

2
ω2

i ≈ ω2
q

∫ ∞

0

1

ω
Im

[ −1

ε(q,ω)

]
dω, (9)

where again we find a constraint that the right-hand side of
the expression must remain constant across all momenta. In
general, the behavior of an excitation typically follows some
kind of dispersion relation, whereby the resonant energy of
the excitation is related to its momentum following some
functional form g such that

ωq = g(q,ωi). (10)

A simple approximation for g, sometimes used in Drude
theories, is that of a free particle:

g(q,ωi) = ωi + �q2

2m
. (11)

Whatever form g may take, it is apparent that as the energy
of the excitation changes with its momentum, so too must its
amplitude change in order to continue to satisfy the sum rules.
Further, whatever functional form one takes for the ELF of the
free-electron gas component, this change in amplitude must
counteract an equal change in both the f -sum and KK-sum
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values. We therefore infer the following condition for any
model of the dielectric function:∫ ∞

0 ωIm
[ −1

ε(0,ω)

]
dω∫ ∞

0 ωIm
[ −1

ε(q,ω)

]
dω

=
ω2

i

∫ ∞
0

1
ω

Im
[ −1

ε(0,ω)

]
dω

ω2
q

∫ ∞
0

1
ω

Im
[ −1

ε(q,ω)

]
dω

. (12)

This expression may be simplified further for any model
that represents resonances in the optical limit as δ functions.
Although it is generally unphysical for a resonance to
correspond to a δ function due to its implied infinite lifetime,
such a modeling is not necessarily unphysical as the optical
limit is itself an idealization, existing in the realm of zero
momentum. A model which constrains γi = 0 in the optical
limit may still include finite lifetime resonances for finite
momenta, and can also be used to uniquely parameterize the
optical ELF following Eq. (4). For such a model, we may write
the following powerful condition constraining the dielectric
function:

1

ωq

∫ ∞

0
ωIm

[ −1

ε(q,ω)

]
dω = ωq

∫ ∞

0

1

ω
Im

[ −1

ε(q,ω)

]
dω.

(13)

C. Symmetric rectangular broadening

We can use a simple example to illustrate how these sum
rule restrictions can be used to develop a formalism involving
a q-dependent plasmon broadening width γ (q). The simplest
arbitrary form possible for a single plasmon resonance making
up an ELF would be that of a rectangular function defined as
follows:

Im

[ −1

ε(q,ω)

]
=

{
Ai

γiωq
for ωq − γi

2 < ω � ωq + γi

2

0 otherwise.
(14)

As before, Ai is a constant amplitude factor designed to
match external data in the optical limit and γi is the plasmon
width. ωq is the q-dependent resonant energy for the plasmon
pole given by a dispersion relation ωq = g(q,ωi), where ωq =
ωi when q = 0.

In the optical limit, the ELF defined by Eq. (14) gives an
f -sum rule result of Ai [RHS of Eq. (6)], and a KK-sum rule
result of Aiωq

γi
ln ωq+γi/2

ωq−γi/2 [RHS of Eq. (9)]. Note that the f -sum
rule result is entirely independent of both γi and q. In the limit
of γi approaching zero, the KK-sum rule result also reduces
to Ai , meaning that for a lossless excitation, both the f - and
KK-sum rules are consistent and independent of q.

If γi is finite, then the KK-sum rule will retain its ωq , and
hence q, dependence. This means that a rectangular form for
plasmon resonances can never satisfy Eq. (13), and therefore
can never be self-consistent for constant and finite broadening
widths. This limitation also exists for constant and finite widths
in both the Drude and Lindhard dielectric theories.

We may still attempt to satisfy the sum rule constraints with
the use of a variable width γi(q). This involves specifying
a functional form for γi(q) designed to counteract the q

dependence of ωq so that the KK-sum rule will once again
yield a constant value. ωq , however, always increases with
increasing q, and thus, like increased broadening, increases
the outcome of the KK-sum rule. Therefore, we insert a renor-
malization factor Ni(q), where Ni(0) = 1 and Ni(q > 0) < 1,

so that the functional form for each plasmon resonance
becomes

Im

[ −1

ε(q,ω)

]
=

{
Ni (q)Ai

γi (q)ωq
for ωq − γi

2 < ω � ωq + γi

2

0 otherwise.
(15)

Thus we can ensure that the KK-sum rule remains constant
for all values of q. However, the factor Ni(q) changes the value
of the f -sum rule, while the broadening we have included, due
to its inherent symmetry, does not. Therefore, for any model
under which the plasmon width is defined as zero in the optical
limit, the plasmon broadening included at finite momentum
transfer cannot be symmetric.

D. Asymmetric rectangular broadening

An asymmetric broadening is the only way in which we
can ensure that the effect of broadening, like the effect of
the renormalization factor Ni(q), changes the outcome of the
KK-sum rule and the outcome of the f -sum rule by the same
amount. For our example plasmon equation, this means we
must rewrite Eq. (15) as

Im

[ −1

ε(q,ω)

]
=

{
Ni (q)Ai

γi (q)ωq
for ωq −αi(q) < ω�ωq +βi(q)

0 otherwise,

(16)

where αi(q) + βi(q) = γi(q), and αi(q) �= βi(q) ∀q �= 0. The
aim is then to construct αi(q) and βi(q) so that the broadening
they invoke affects the two sum rules equally, thus ensuring
satisfaction of Eqs. (12) and (13) for all values of q. We define
the renormalization factor as

Ni(q) =
∫ ∞

0 ωIm
[ −1

ε(0,ω)

]
dω∫ ∞

0 ωIm
[ −1

ε(q,ω)

]
dω

. (17)

Since we have defined an explicit form for our excitations
[Eq. (16)], we can substitute into Eq. (13) to find an expression
for the width parameters αi(q) and βi(q):

1 + βi(q)2 − αi(q)2

2ωq[αi(q) + βi(q)]
= ωq

αi(q) + βi(q)
ln

[
ωq + βi(q)

ωq − αi(q)

]
.

(18)

This relationship is satisfied by the trivial case of αi(q) =
βi(q) = 0, corresponding to a partial pole or lossless plasmon
model [27]. We can also find an expression for Ni(q) by
combining Eqs. (16) and (17), yielding

Ni(q) = Ai

{
ωq + βi(q)2 − αi(q)2

2[αi(q) + βi(q)]

}−1

. (19)

We now have two equations [(18) and (19)] and three
unknowns [Ni(q), αi(q), and βi(q)]. We must therefore define a
third constraint, which we will construct by relating the broad-
ening parameter αi(q) to the peak resonance energy ωi(q). In
the limit of zero broadening, we must have that αi(q) = 0,∀q.
A second physically significant model will hold that electronic
excitations will propagate only at energies higher than the
plasma frequency ωp = ωi(0). This second model can be
defined by stating that αi(q) = ωq − ωi . Finally, we also wish
to consider a model where excitations may exist below the
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plasma frequency, implying that for q > 0, αi(q) > ωq − ωi .
All of these options may be conveniently described by defining
the following relationship between αi(q) and ωi(q):

αi(q) = ωq

ωq − ωi

ωi

1+ai
+ ωq − ωi

. (20)

Here we have implemented a new parameter ai , which may
be varied in order to produce each of our possible physical
models. In the case of ai = −1, both αi(q) and βi(q) reduce to
zero, resulting in a lossless partial pole model. For ai = 0, we
find that αi(q) = ωq − ωi . This moderate broadening model,
in which excitations in the optical limit may result only in
higher-energy excitations at finite momentum transfer, repre-
sents an approach similar, for example, to that of Sorini et al.
[10]. If we increase ai to large positive values, the resonances
will broaden to encompass energies both above and below the
plasma energy of the material. This behavior is qualitatively
consistent with what may be expected in a Mermin model.

III. A FREE-ELECTRON GAS EXAMPLE

The most simple demonstration of how our toy model works
is for the case of a free-electron gas, which consists of a
single excitation that we will model as a δ function at an
arbitrary energy of 30 eV in the optical limit. We show the
corresponding energy and momentum ranges over which such
an excitation may propagate under the asymmetric rectangle
model in Fig. 1. In all cases, the energy loss function is defined
by Eq. (16). The green region represents the case of a lossless
plasmon, where ai = −1. The blue region is determined using
ai = 0, corresponding to moderate losses, while the red region
represents a model with ai = 100, corresponding to extreme
losses. In all cases, the dispersion relation ωq = g(q,ωi)
follows the quantum-mechanical Lindhard formulation for
plasmons in a free-electron gas [21].
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FIG. 1. (Color online) Valid energy and momentum combina-
tions for bulk- and single-electron excitations in an ideal free-electron
gas of plasma frequency ωp = 30 eV. Different colors represent
results from different assumptions regarding the level of second-order
losses (i.e., finite excitation lifetimes) in the material. The green line
represents valid excitations in a lossless system (ai = −1). The blue
region represents valid excitations for a system with moderate losses
(ai = 0), while the regions bounded by the red areas represent valid
energies and momenta for excitations in an extreme system with very
short excitation lifetimes (ai = 100).
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FIG. 2. (Color online) Energy loss function of an idealized sys-
tem using different broadening assumptions within the asymmetric
rectangle model. The dotted black line represents the loss function in
the optical limit (�q = 0), while colored curves are at �q = 1 Å−1.
The green line represents an assumed lossless system (ai = −1),
while the blue curve assumes a system with moderate losses (ai = 0),
and the red curve represents a system with extreme losses (ai = 100),
and hence extreme excitation broadening.

Regardless of the absolute level of broadening in each case,
the asymmetry of the spectrum is guaranteed by the f - and
KK-sum rules. Also resulting from the sum rules is a significant
reduction in the energy loss function value as the excitations
are broadened. Figure 2 shows a cross section of the ELF at
momentum �q = 1.0 Å−1, with the excitations modeled by
asymmetric rectangles with ai = −1, 0, and 100 as before.
Also shown as a dotted line is the form of the excitation in the
optical limit.

This momentum value (1.0 Å−1) is relatively low—a
determination of IMFPs over a 120 eV range, for example,
requires an integration range of more than 12 Å−1. The use
of broadening can therefore decrease the amplitude of the
ELF quite rapidly with increasing momentum transfer, and
correspondingly can shift a significant amount of the potential
scattering losses to both higher and lower energies. The result
of this is twofold: for highly broadened systems (i.e., with low
excitation lifetimes) such as when ai = 100, bulk- and single-
electron excitations may occur even at very low energies,
leading to a dramatically lower IMFP for low-energy incident
electrons. This also means that excitations will be permitted
at energies below the normal cutoff determined by the plasma
frequency �ωp. In such systems, many losses are shifted to
high energies outside of the integration range of Eq. (2), lead-
ing to an overall increase in the IMFP at high energies of the
incident electron. The extent of these effects for our example
free-electron gas system is shown by the IMFPs in Fig. 3.

In the extreme case of broadening quantified by ai = 100,
we see a dramatic reduction in the IMFP for energies below
70 eV—just over twice the energy of our assumed optical
resonance. Importantly, in this case, the IMFP below 30 eV is
finite, due to the existence of excitation channels for electrons
with less energy than the optical resonance. This leads to a
dramatic increase in the IMFP at higher energies. However,
this is a most unlikely physical situation because although
there is evidence in the literature to support a reduction in
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FIG. 3. (Color online) The electron IMFP of an idealized free-
electron gas system of plasma frequency ωp = 30 eV. The blue line
represents the IMFP for a lossless version of this system (ai = −1),
where bulk- and single-electron excitations have an infinite lifetime.
For the red curve, the system is assumed to have moderate second-
order losses (ai = 0), while the green curve assumes extreme second-
order losses (ai = 100).

IMFP at very low energies [12,28], there is no evidence to
suggest that current theories are significantly incorrect at very
high energies.

The case of moderate broadening, however, is much more
promising. The use of ai = 0 (blue region in Fig. 1) still leads
to a marked decrease in the IMFP at low electron energies, but
the difference at higher energies is more subtle. This implies
that a momentum-dependent broadening model may indeed
be physically realistic, and also a potential tool for explaining
discrepancies between theoretical and experimental data if
used in an appropriate manner.

IV. APPLICATION TO MOLYBDENUM

We now turn our attention to a real-world application of the
model to further assess its level of applicability. For this study,
we choose molybdenum, as its electron scattering behavior
has recently been studied in depth using both theoretical and
high-precision experimental methods [29].

The optical ELF for Mo has also been treated in numerous
studies; however, the resulting spectra have been quite varied.
Recent results from density functional theory (DFT) indicate
a spectrum with very strong, sharp resonance peaks around
11, 25, and 43 eV; however, data inferred from REELS
measurements suggest that the 43 eV peak may in fact
be much broader and less intense [16]. Another commonly
used reference spectrum obtained by optical transmission
measurements does not exhibit the 43 eV resonance at all
[15]. Such inconsistencies are common in the tabulated optical
ELF data [25], and are compounded by the sensitivity of
electron-based measurements to the choice of model defining
the dispersive behavior of the solid [30]. In the absence of a
clear resolution to this problem, we conduct this study using
theoretical data, as, first of all, it produces a better match to
experiment for our final IMFP determination and, second, the
existence of strongly defined peaks at higher energies allows a
clearer investigation of the effect of our broadening model. We
note that variations in optical data may have a significant effect
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FIG. 4. (Color online) Cross sections of the ELF of molybdenum.
The dotted black curve shows the optical ELF (�q = 0), while the
colored curves show the ELF at �q = 0.9 Å−1. The green curve
assumes that solid Mo is lossless (ai = −1), and hence retains
the detailed structure of the optical ELF. The blue curve assumes
moderate losses (ai = 0), and the red curve assumes extreme losses
(ai = 100). All data are determined using the asymmetric rectangle
toy model as described, with variations in the ai parameter.

on IMFP determinations, though this is most strongly the case
for variations in the ELF at very low energies corresponding
to the first couple of resonances [18].

The theoretical optical ELF data is calculated using the
DFT band structure package WIEN2k [31]. This package
implements a linearized augmented plane-wave (LAPW)
approach for solving the Kohn-Sham equation and evaluating
self-consistent eigenstates for valence- and conduction-band
electrons in a periodic structure. The transition amplitudes
between loosely bound states are evaluated within the first
Born approximation in order to determine local oscillator
strengths and subsequently the dielectric function and ELF in
the optical limit [25,32]. The calculation includes exchange
and correlation interactions via the generalized gradient
approximation (GGA) [33], but neglects quasiparticle and
excitonic effects. Some parameters related to the completeness
of the plane-wave set and partitioning of the cluster (e.g.,
effective muffin-tin radius) are adjustable in order to achieve
convergence, and in some cases calculations may explicitly
include local orbitals for excited states (though these have
been omitted here). Some small variations in DFT calculated
spectra can therefore occur, and are typically most prominent
in the higher-energy part of the spectrum [18].

Figure 4 shows a cross section of our calculated ELF of
molybdenum. The dotted black line represents the optical
ELF determined from DFT as described, which all models
are constrained to match at �q = 0. The other curves show
the ELF at �q = 0.9 Å−1, utilizing the asymmetric rectangle
model with different values of ai as before.

At this momentum transfer, the model using moderate
broadening (ai = 0) still retains at least some features of the
optical energy loss spectrum, being three dominant resonances.
For the very broad case, however, electronic losses are enabled
over a wide range of energies without any significant structural
dependence. As with the free-electron gas example, this serves
to shift some of the potential for the material to scatter incident
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FIG. 5. (Color online) ELF of molybdenum evaluated using op-
tical data from density functional theory, and extended via an asym-
metric rectangle toy model using different assumptions regarding the
overall level of excitation broadening. (a) Lossless system (ai = −1);
(b),(c) systems with moderate (ai = 0) and extreme broadening
(ai = 100), respectively. The use of finite excitation broadening
heavily influences both the shape and magnitude of the momentum-
dependent ELF, and can enable excitations in the material below the
plasma frequency ωp .

electrons with both higher- and lower-energy transfers, causing
a significant change in the electron IMFP.

We show in Fig. 5 an illustration of the energy- and
momentum-dependent ELF of molybdenum over a range of
momenta up to 4.0 Å−1. The high rate at which the change in
magnitude of the ELF occurs due to the excitation broadening
is apparent. Due to the dominance of the low-energy and
low-momentum region to the overall scattering, however, the
effect on the IMFP is less extreme.
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FIG. 6. (Color online) Theoretical and experimental determina-
tions of the electron IMFP for molybdenum. The black curve
with uncertainties shows a recent high-precision measurement from
XAFS [12], while the colored curves show theory results from the
asymmetric rectangle model. The blue curve assumes that bulk- and
single-electron excitations in molybdenum are lossless (ai = −1),
while the red curve assumes moderate losses (ai = 0), and the green
curve assumes extreme losses (ai = 100). The use of extreme losses
appears invalid due to unphysical behavior at high energies; however,
moderate losses appear physically viable, with some improvement at
low energies and very small effect at high energies.

Resulting IMFP values for molybdenum are given in Fig. 6.
The theoretical curves are evaluated using the ELFs plotted
above from the asymmetric rectangle model using different
broadening levels. These are then transformed according to
Eq. (2). Also shown is the IMFP of molybdenum recently
obtained by high-precision x-ray absorption fine-structure
(XAFS) analysis [12].

As in the free-electron case, the use of an extreme level of
broadening yields a result that is difficult to justify physically,
though it does produce a marked decrease in the IMFP at
low energies. The comparison between the lossless model
of ai = −1 and the moderate broadening model of ai = 0 is
much more interesting. In this regime, the broadening serves to
negate the detailed oscillatory structure that otherwise appears
in the theoretical result due to the highly partitioned excitation
spectrum of molybdenum. Such detailed structure can appear
in other modeling [12], but is usually moderated by the use
of slightly broadened functions to describe the components of
the ELF, rather than ideal δ functions or rectangles.

The other effects of the moderate broadening model are
to change the overall magnitude of the IMFP in the high-
and low-energy regions. In the high-energy region, the IMFP
is only moderately increased, and over an extended energy
range (i.e., keV), it may prove to be an insignificant effect,
allowing continued agreement with existing theories. In the
low-energy region, the IMFP is significantly reduced, reducing
the discrepancy with the experimental data.

V. CONCLUSIONS

These results are strongly suggestive that the appropriate
use of a causally constrained broadening algorithm to de-
scribe the behavior of bulk- and single-electron excitations
may significantly reduce the current discrepancy between
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theoretical and experimental electron IMFP results at low ener-
gies, without significantly affecting the established agreement
at very high energies. This study has been carried out using a
toy model with the simplest possible function to describe the
form of excitations in the ELF (i.e., an asymmetric rectangle).

Alternate functions may produce substantially better re-
sults. These functions are limited, however, to those that can
be constrained to satisfy the sum rule given by Eq. (13). These
means that, for example, neither of the popular Lindhard or
Drude dielectric functions can be utilized in this fashion to
construct a momentum-dependent ELF in a manner that does
not violate causality [34]. The Mermin function, conversely, is
an asymmetric transformation of the Lindhard function that is
explicitly constrained to match both the f - and KK-sum rules,
and will always satisfy Eq. (13) regardless of the assigned
excitation broadening. Therefore, the Mermin form is a valid
trial function; however, it requires investigation as to how it
may be uniquely constrained.

A very recent investigation by Da et al. [35] used Mermin
functions with constant broadening widths in an attempt to
resolve the observed discrepancy in the IMFP of molybdenum.
In this case, good agreement was achieved above 80 eV by a
precise match to the optical ELF using negative oscillator terms
(i.e., Mermin functions with Ai < 0). This study demonstrates
that better agreement may be obtained, but unfortunately
uses negative oscillators of questionable basis to achieve this.
Further, such a model compounds the problem of uniqueness
in the Mermin fitting, potentially leading to a great many more
free parameters.

A sequel to the current work will investigate Mermin
functions, the problem of uniqueness, and constraints on
energy- and momentum-dependent broadening in a fully
physical model. It will demonstrate how more sophisticated
modeling of the broadening function γi(q) may be used to
both improve the agreement with experimental results and
resolve physical anomalies with the current and past theories
of inelastic electron scattering.

As a final note, it is apparent from this work and others
[8,18,35] that excitation broadening alone cannot fully account
for the complexity of the observed discrepancy between
experiment and theory at all energies. This is to be expected.
Other physical factors, include the effects of exchange and
correlation [36], and effective potentials from excitonic states,
have been suggested recently as impacting upon the low-
energy inelastic scattering behavior of electrons, despite not
being routinely implemented into current theories. This work
will assist in developing a body of information regarding the
relative magnitude of each of these effects on the low-energy
behavior of the electron IMFP. At energies above around
80 eV, it appears that the broadening effects discussed herein
may yet be the dominant cause of the discrepancy [18].

ACKNOWLEDGMENTS

The authors acknowledge the work of Z. Barnea, M. D.
de Jonge, N. A. Rae, and J. L. Glover, and their helpful
contribution to the development of ideas important to this
research.

[1] R. F. Egerton, Rep. Prog. Phys. 72, 016502 (2009).
[2] J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).
[3] C. J. Powell, A. Jablonski, W. S. M. Werner, and W. Smekal,

Appl. Surf. Sci. 239, 470 (2005).
[4] B. L. Thiel and M. Toth, J. Appl. Phys. 97, 051101 (2005).
[5] Y. Zhu, H. Inada, K. Nakamura, and J. Wall, Nat. Mater. 8, 808

(2009).
[6] J. D. Bourke and C. T. Chantler, Phys. Rev. Lett. 104, 206601

(2010).
[7] C. J. Powell, A. Jablonski, and F. Salvat, Surf. Interface Anal.

37, 1068 (2005).
[8] J. D. Bourke and C. T. Chantler, J. Phys. Chem. A 116, 3202

(2012).
[9] S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal.

43, 689 (2011).
[10] A. P. Sorini, J. J. Kas, J. J. Rehr, M. P. Prange, and Z. H. Levine,

Phys. Rev. B 74, 165111 (2006).
[11] C. D. Denton, I. Abril, R. Garcia-Molina, J. C. Moreno-Marin,

and S. Heredia-Avalos, Surf. Interface Anal. 40, 1481 (2008).
[12] C. T. Chantler and J. D. Bourke, J. Phys. Chem. Lett. 1, 2422

(2010).
[13] H. Nikjoo, S. Uehara, and D. Emfietzoglou, Interaction of

Radiation with Matter (CRC Press, Boca Raton, FL, 2012).
[14] D. R. Penn, Phys. Rev. B 35, 482 (1987).
[15] E. D. Palik, Handbook of Optical Constants of Solids III

(Academic, New York, 1998).
[16] M. Vos, J. Elec. Spectrosc. Rel. Phenom. 191, 65 (2013).

[17] J. Weaver, D. Lynch, and C. Olsen, Phys. Rev. B 10, 501 (1974).
[18] C. T. Chantler and J. D. Bourke, J. Phys. Chem. A 118, 909

(2014).
[19] C. J. Tung, J. C. Ashley, and R. H. Ritchie, Surf. Sci. 81, 427

(1979).
[20] R. H. Ritchie and A. Howie, Philos. Mag. 36, 463 (1977).
[21] J. Lindhard, Dan. Mat. Fys. Medd. 28, 1 (1954).
[22] N. D. Mermin, Phys. Rev. B 1, 2362 (1970).
[23] D. Emfietzoglou, F. A. Cucinotta, and H. Nikjoo, Radiat. Res.

164, 202 (2005).
[24] D. Y. Smith and E. Shiles, Phys. Rev. B 17, 4689 (1978).
[25] W. S. M. Werner, K. Glantschnig, and C. Ambrosch-Draxl,

J. Phys. Chem. Ref. Data 38, 1013 (2009).
[26] C. M. Kwei, Y. F. Chen, C. J. Tung, and J. P. Wang, Surf. Sci.

293, 202 (1993).
[27] J. D. Bourke and C. T. Chantler, J. Elec. Spec. Rel. Phenom.

196, 142 (2014).
[28] J. Rundgren, Phys. Rev. B 59, 5106 (1999).
[29] C. T. Chantler and J. D. Bourke, J. Phys.: Condens. Matter 26,

145401 (2014).
[30] M. Vos and P. L. Grande, Surf. Sci. 630, 1 (2014).
[31] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and

J. Luitz, WIEN2k, An Aug- mented Plane Wave + Local
Orbitals Program for Calculating Crystal Properties (Karlheinz
Schwarz, Techn. Universität Wien, Austria, 2001).

[32] C. Ambrosch-Draxl and J. O. Sofo, Comp. Phys. Comm. 175, 1
(2006).

174306-7

http://dx.doi.org/10.1088/0034-4885/72/1/016502
http://dx.doi.org/10.1088/0034-4885/72/1/016502
http://dx.doi.org/10.1088/0034-4885/72/1/016502
http://dx.doi.org/10.1088/0034-4885/72/1/016502
http://dx.doi.org/10.1103/RevModPhys.72.621
http://dx.doi.org/10.1103/RevModPhys.72.621
http://dx.doi.org/10.1103/RevModPhys.72.621
http://dx.doi.org/10.1103/RevModPhys.72.621
http://dx.doi.org/10.1016/j.apsusc.2004.06.012
http://dx.doi.org/10.1016/j.apsusc.2004.06.012
http://dx.doi.org/10.1016/j.apsusc.2004.06.012
http://dx.doi.org/10.1016/j.apsusc.2004.06.012
http://dx.doi.org/10.1063/1.1861149
http://dx.doi.org/10.1063/1.1861149
http://dx.doi.org/10.1063/1.1861149
http://dx.doi.org/10.1063/1.1861149
http://dx.doi.org/10.1038/nmat2532
http://dx.doi.org/10.1038/nmat2532
http://dx.doi.org/10.1038/nmat2532
http://dx.doi.org/10.1038/nmat2532
http://dx.doi.org/10.1103/PhysRevLett.104.206601
http://dx.doi.org/10.1103/PhysRevLett.104.206601
http://dx.doi.org/10.1103/PhysRevLett.104.206601
http://dx.doi.org/10.1103/PhysRevLett.104.206601
http://dx.doi.org/10.1002/sia.2098
http://dx.doi.org/10.1002/sia.2098
http://dx.doi.org/10.1002/sia.2098
http://dx.doi.org/10.1002/sia.2098
http://dx.doi.org/10.1021/jp210097v
http://dx.doi.org/10.1021/jp210097v
http://dx.doi.org/10.1021/jp210097v
http://dx.doi.org/10.1021/jp210097v
http://dx.doi.org/10.1002/sia.3522
http://dx.doi.org/10.1002/sia.3522
http://dx.doi.org/10.1002/sia.3522
http://dx.doi.org/10.1002/sia.3522
http://dx.doi.org/10.1103/PhysRevB.74.165111
http://dx.doi.org/10.1103/PhysRevB.74.165111
http://dx.doi.org/10.1103/PhysRevB.74.165111
http://dx.doi.org/10.1103/PhysRevB.74.165111
http://dx.doi.org/10.1002/sia.2936
http://dx.doi.org/10.1002/sia.2936
http://dx.doi.org/10.1002/sia.2936
http://dx.doi.org/10.1002/sia.2936
http://dx.doi.org/10.1021/jz100776h
http://dx.doi.org/10.1021/jz100776h
http://dx.doi.org/10.1021/jz100776h
http://dx.doi.org/10.1021/jz100776h
http://dx.doi.org/10.1103/PhysRevB.35.482
http://dx.doi.org/10.1103/PhysRevB.35.482
http://dx.doi.org/10.1103/PhysRevB.35.482
http://dx.doi.org/10.1103/PhysRevB.35.482
http://dx.doi.org/10.1016/j.elspec.2013.10.007
http://dx.doi.org/10.1016/j.elspec.2013.10.007
http://dx.doi.org/10.1016/j.elspec.2013.10.007
http://dx.doi.org/10.1016/j.elspec.2013.10.007
http://dx.doi.org/10.1103/PhysRevB.10.501
http://dx.doi.org/10.1103/PhysRevB.10.501
http://dx.doi.org/10.1103/PhysRevB.10.501
http://dx.doi.org/10.1103/PhysRevB.10.501
http://dx.doi.org/10.1021/jp408438r
http://dx.doi.org/10.1021/jp408438r
http://dx.doi.org/10.1021/jp408438r
http://dx.doi.org/10.1021/jp408438r
http://dx.doi.org/10.1016/0039-6028(79)90110-9
http://dx.doi.org/10.1016/0039-6028(79)90110-9
http://dx.doi.org/10.1016/0039-6028(79)90110-9
http://dx.doi.org/10.1016/0039-6028(79)90110-9
http://dx.doi.org/10.1080/14786437708244948
http://dx.doi.org/10.1080/14786437708244948
http://dx.doi.org/10.1080/14786437708244948
http://dx.doi.org/10.1080/14786437708244948
http://dx.doi.org/10.1103/PhysRevB.1.2362
http://dx.doi.org/10.1103/PhysRevB.1.2362
http://dx.doi.org/10.1103/PhysRevB.1.2362
http://dx.doi.org/10.1103/PhysRevB.1.2362
http://dx.doi.org/10.1667/RR3399
http://dx.doi.org/10.1667/RR3399
http://dx.doi.org/10.1667/RR3399
http://dx.doi.org/10.1667/RR3399
http://dx.doi.org/10.1103/PhysRevB.17.4689
http://dx.doi.org/10.1103/PhysRevB.17.4689
http://dx.doi.org/10.1103/PhysRevB.17.4689
http://dx.doi.org/10.1103/PhysRevB.17.4689
http://dx.doi.org/10.1063/1.3243762
http://dx.doi.org/10.1063/1.3243762
http://dx.doi.org/10.1063/1.3243762
http://dx.doi.org/10.1063/1.3243762
http://dx.doi.org/10.1016/0039-6028(93)90314-A
http://dx.doi.org/10.1016/0039-6028(93)90314-A
http://dx.doi.org/10.1016/0039-6028(93)90314-A
http://dx.doi.org/10.1016/0039-6028(93)90314-A
http://dx.doi.org/10.1016/j.elspec.2014.02.004
http://dx.doi.org/10.1016/j.elspec.2014.02.004
http://dx.doi.org/10.1016/j.elspec.2014.02.004
http://dx.doi.org/10.1016/j.elspec.2014.02.004
http://dx.doi.org/10.1103/PhysRevB.59.5106
http://dx.doi.org/10.1103/PhysRevB.59.5106
http://dx.doi.org/10.1103/PhysRevB.59.5106
http://dx.doi.org/10.1103/PhysRevB.59.5106
http://dx.doi.org/10.1088/0953-8984/26/14/145401
http://dx.doi.org/10.1088/0953-8984/26/14/145401
http://dx.doi.org/10.1088/0953-8984/26/14/145401
http://dx.doi.org/10.1088/0953-8984/26/14/145401
http://dx.doi.org/10.1016/j.susc.2014.06.008
http://dx.doi.org/10.1016/j.susc.2014.06.008
http://dx.doi.org/10.1016/j.susc.2014.06.008
http://dx.doi.org/10.1016/j.susc.2014.06.008
http://dx.doi.org/10.1016/j.cpc.2006.03.005
http://dx.doi.org/10.1016/j.cpc.2006.03.005
http://dx.doi.org/10.1016/j.cpc.2006.03.005
http://dx.doi.org/10.1016/j.cpc.2006.03.005


C. T. CHANTLER AND J. D. BOURKE PHYSICAL REVIEW B 90, 174306 (2014)

[33] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[34] This is excepting the ideal and trivial case of a lossless system
where γi(q) = 0, ∀i,q.

[35] B. Da, H. Shinotsuka, H. Yoshikawa, Z. J. Ding, and S. Tanuma,
Phys. Rev. Lett. 113, 063201 (2014).

[36] I. Nagy and P. M. Echenique, Phys. Rev. B 85, 115131
(2012).

174306-8

http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.113.063201
http://dx.doi.org/10.1103/PhysRevLett.113.063201
http://dx.doi.org/10.1103/PhysRevLett.113.063201
http://dx.doi.org/10.1103/PhysRevLett.113.063201
http://dx.doi.org/10.1103/PhysRevB.85.115131
http://dx.doi.org/10.1103/PhysRevB.85.115131
http://dx.doi.org/10.1103/PhysRevB.85.115131
http://dx.doi.org/10.1103/PhysRevB.85.115131



