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One of the most common types of experiment in X-ray absorption spectroscopy

(XAS) measures the secondary inelastically scattered fluorescence photon. This

widespread approach has a dominant systematic of self-absorption of the

fluorescence photon. The large impact of self-absorption compromises accuracy,

analysis and insight. Presented here is a detailed self-consistent method to

correct for self-absorption and attenuation in fluorescence X-ray measurements.

This method and the resulting software package can be applied to any

fluorescence data, for XAS or any other experimental approach detecting

fluorescence or inelastically scattered radiation, leading to a general solution

applicable to a wide range of experimental investigations. The high intrinsic

accuracy of the processed data allows these features to be well modelled and

yields deeper potential insight.

1. Introduction

X-ray absorption fine structure (XAFS) is the oscillatory

behaviour in photoelectric X-ray absorption spectra above an

ionization edge. The oscillations are caused by backscattering

and self-interference of the wavefunction of an emitted

photoelectron within the material near the emitting atom.

From these oscillations, we can extract highly accurate infor-

mation on the local atomic structure surrounding the X-ray

absorbing atom. XAFS is one of the most popular techniques

used in synchrotron measurements and applications have been

found in many diverse fields: fundamental physics (Bertoni,

2015), pure and applied chemistry (Lamberti & Bokhoven,

2016; Islam et al., 2016), biological and medical science

(Fornasini, 2015), earth sciences and engineering (Boscherini,

2015; Ramaker, 2016), and art and cultural heritage (Farges &

Cotte, 2016). However, the potential of this technique is often

limited by poorly quantified experimental uncertainties or

untreated systematic effects (Creagh & Hubbell, 1987, 1990;

Krappe & Rossner, 1999). Fluorescence measurement,

developed by Jaklevic et al. (1977), is a particularly useful

technique for dilute systems (Jaklevic et al., 1993; Lee et al.,

1981) and is very commonly used for modern experiments. For

XAFS measurements conducted using fluorescence detection,

there is particular difficulty in obtaining accurate statistical

uncertainties compared with experiments conducted in

‘transmission mode’, and most publications are reported with

no uncertainties.

One of the earliest attempts to explain the distortion of

fluorescence X-ray absorption spectroscopy (XAS) was made

by Goulon et al. (1982). They recognized the key limitations of

fluorescence measurement from the loss of statistics in the

signal-to-noise ratio, some attenuation of both the edge jump

and the XAFS oscillations, the fluorescence yield, the solid

angle and the core integral.
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The first studies to attempt to correct for self-absorption in

fluorescence detection of XAFS were reported in a series of

papers by Troger et al. (1992). They commented that

fluorescence-yield XAFS has particular advantages in many

cases due to its clean signal over the background and a much

higher information depth or effective depth compared with

electron-yield measurements. They noted that in two ideal

limits, of thin films or dilute samples, the intensity is directly

proportional to the central atom absorption coefficient of

interest and therefore, in principle, the extraction of the XAFS

may be straightforward. In concentrated or ‘thick’ samples,

they noted that the absorptive effects distort the signal

dramatically, and errors in the determination of physical

parameters can exceed 50%. They considered the solid angle,

core integral and fluorescence yield. Troger et al. (1992) illu-

strated a partial correction for small amplitudes of oscillation

and absorptive corrections but only in �, and with significant

distortions remaining.

Previous investigations of these distortions in fluorescence

spectra of XAFS have required knowledge of the sample

stoichiometry (Troger et al., 1992), making a series of

measurements at multiple angles (Eisebitt et al., 1993) or

knowledge of the known energy dependence of the absorption

coefficients (Pfalzer et al., 1999). These studies could partially

correct for absorptive effects. Prior to 2005, studies assumed

that ‘the effect of the XAFS on the correction term was very

small’ and that ‘the samples are in the thick limit’, as stated by

Booth & Bridges (2005). Those authors correctly state that the

derivation or inversion of the constitutive equations, required

to obtain a coefficient which can be analysed by theory or

software packages, can be challenging because there is a

singularity, so that in some general limits the inversion does

not exist. They investigated a sample (4.9 mm Cu metal foil)

closer to a thicker limit where the inversion effect was strong

(�t > 1), and performed an inversion using an expansion from

the ‘thick dilute sample limit’ combined with a thin-limit first-

order expansion of the key term in the exponential.

Other problems with past work include: (i) the critical need

to consider the beam path for the incident and fluorescent

photons to invert or obtain a true absorption coefficient and

thereby make a clear link with theory; (ii) the use of absorp-

tion coefficients in critical terms where attenuation coeffi-

cients are needed (Chantler et al., 2012); and (iii) the need to

relate the analysis to the observed or measured (�/�)(�t) as

the primary output of the theory and hence of the fit, rather

than a spline-distorted �. Nonetheless, this work builds upon

and extends the previous efforts to a more general and

effective solution.

The current popular packages used worldwide for some

1000 publications of XAS per annum, such as IFEFFIT

(Newville, 2001) and Athena (Ravel & Newville, 2005), do not

include any such inversion for (�/�) and instead follow some

of the above work in a particular adaptation of a � inversion,

together with the limitations mentioned above. An older

program, FLUO, deals with a limited application of self-

absorption correction to XANES, whereas some of the latest

packages developed such as Larch (Newville, 2013) do not

include any inversion at all. It is high time to improve upon

this, and to implement a robust and user-accessible approach.

We hope that these and other packages will incorporate this

analysis in a routine manner.

2. A key problem in general X-ray fluorescence analysis

A dramatic discrepancy between raw spectra from transmis-

sion and raw spectra from fluorescence measurements is well

known, as exemplified by Figs. 1 and 2 for the Ni complexes

analysed in this study. There is a large and divergent disper-

sion between the individual fluorescence pixel spectra, and the

spectral shape is distorted, impairing high-accuracy analysis.

The slope for the absorption or attenuation coefficient above

the edge decreases with energy as predicted by theory, while

the slope in experimental fluorescence spectra usually goes up

with energy. Individual pixels in a multi-pixel fluorescence

detector display different slopes. This is well understood in a

qualitative sense, particularly because of the self-absorption
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Figure 1
Raw fluorescence spectra for the nickel i-pr complex, demonstrating the
large dispersion between spectra collected by individual pixels. This is
well known and common in XAS fluorescence-mode data collection.

Figure 2
Published transmission spectra for the active Ni in the Ni i-pr complex, on
an absolute scale, displaying the expected XAS spectral trend for
absorption coefficients (Chantler et al., 2015). These measurements were
taken simultaneously on the same samples as Fig. 1. This illustrates the
large differences in structure and spectral profiles of transmission data
(�/�)(�t)s from the fluorescence measurement, ð�=�Þ�pe shown in Fig. 1,
observed in many data sets. The standard error across the spectrum is of
the order of 10�4 in absolute units or <0.01% on the raw data.
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systematic, attenuation and uncalibrated detector efficiencies

in fluorescence. While the detector efficiency can be corrected

for, XAFS needs a self-consistent method for removing the

effect of self-absorption from the spectra. The distortions due

to attenuating and self-absorptive effects are particularly

serious, as stated by Troger et al. (1992), because they will lead

to different parameterized fits, i.e. different structural and

model parameters, compared with a corrected spectrum

following the theoretical predictions for absorption (trans-

mission). With the data set illustrating this discussion (Fig. 1),

there is a particularly strong variation in the pixel-dependent

amplitude, in part from the significant variation in the pixel-

dependent horizontal and vertical solid angles across the

detector relative to the sample.

Previous attempts to remove this systematic have not

significantly reduced the variance between pixel spectra or

different angles and have not produced a physical trend of

(�/�) with energy. Any measure of variance (a combination of

statistical and systematic point-wise uncertainty) was domi-

nated by the large pixel- and angle-dependent variations of all

sources, rather than defining the consistency and reliability of

the data, statistical or otherwise. The high-accuracy analysis of

many important data sets for chemistry, bonding, biological

dynamics and disease is therefore limited, with many data sets

partially analysed, unpublished or abandoned.

In this work, we predict to high accuracy the magnitude of

the dispersion and the energy functional due to self-

absorption. We present the software package SeAFFluX (self-

absorption fitting of fluorescent X-rays) to correct for this

systematic in a self-consistent and robust manner. We invert

the effects of self-absorption and attenuation to extract (�/�)

directly, using alternate approximation methods, allowing a

direct comparison with theory and with transmission experi-

ments without additional processing. As a result, the disper-

sion is dramatically reduced, and the shape and pattern for

each pixel or angle are consistent. Further, the corrected

spectral shape follows the required trend for absorption and

the absorption coefficient, and can thereby be related directly

to theory. Hence, the pixel variance provides a reliable esti-

mate of statistical and some of the systematic uncertainty.

In the supporting information, we provide: (i) software able

to predict and correct for the self-absorption systematic using

real experimental fluorescence data; (ii) the installation and

operational manual for said software; and (iii) tabulations of

ð�=�Þ�pe versus E for two 15 mM Ni complexes from fluores-

cence measurements in two formats, namely a prototype error-

propagating input suitable for eFEFFIT (Schalken &

Chantler, 2018) and IFEFFIT input, and a prototype IUCr

CIF data format.

3. Applications and limitations of model, software and
experiment

The complexes considered in this work have local metal

environments with approximate tetrahedral and square-planar

coordination geometries (Fox et al., 1964; Britton & Pignolet,

1989). A previous publication has confirmed these structures

using transmission-mode XAFS (Chantler et al., 2015). This

system therefore provides an excellent test of fluorescent

multi-pixel data and processing (Best et al., 2016; Islam et al.,

2017). We chose this system explicitly because it is a crucial

application typical of many XAFS samples and systems,

because the equations and solutions generalize to many more,

and because high-quality transmission spectra (using the

X-ray extended range technique, XERT) and high-quality

fluorescence data are obtained for the same sample in simul-

taneous data collection. It thereby proves the success and

efficacy of the approach and functional.

For highly attenuating samples, transmission mode has poor

statistics or becomes infeasible. In such cases fluorescence-

mode detection is excellent but it cannot be directly compared

with a corresponding absorption coefficient or a reference

transmission experiment. For extremely low attenuation, the

transmission statistics become very challenging and the clean

signal to background of fluorescence is generally a preferred

option, yet once again direct comparison with an absorption

coefficient and the prediction of theory is lost. We choose an

experimental illustration herein where high accuracy is

possible but not easy by transmission, and where it is possible

also by fluorescence measurement, so that a direct comparison

can be made.

The principles of our model apply to all geometries of

fluorescence. Most fluorescence data are collected with the

sample at 45� to the incident beam, where the measurement is

most sensitive to bulk sample properties but also where the

angular variation of self-absorption is very significant. The

detector is typically perpendicular to the incident beam. Some

groups use somewhat specialized techniques of normal

incidence–grazing fluorescence or grazing incidence–normal

fluorescence geometries. Both these geometries lead to

(much) greater attenuation and hence lower signal, and to the

techniques being primarily surface techniques. Penetration

depths in these grazing cases may reach as high as micrometres

or may be only a few nanometres, compared with standard

geometry depths reaching 20 mm or more. The grazing

incidence–normal fluorescence and related geometries have

very large self-absorption effects and distortions and the

discussion here remains relevant. The normal incidence–

grazing fluorescence geometry reduces the self-absorption per

se but can still have significant contributions (Pease et al.,

1989). Our model and software apply to all possible angles

except directly to the reflection XAFS geometry, where the

reflectivity coefficients require significant additional discus-

sion. A key advantage of the model and software is that they

apply to ranges of experimental angles of incidence and

especially fluorescence relative to different pixels of a multi-

pixel detector, and the experimental evidence of the multiple

elements is used directly to assess the correction of absorptive

effects relative to the intended absorption coefficient from

transmission experiments. In a similar vein, electron-yield

measurements are based upon the inelastic cross section and a

possible extraction potential, but of course would require

different code for the electron ‘self-absorption’ cross sections

and treatment.
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The example we present here involves the standard posi-

tioning of the fluorescence detector. A major question relates

to the investigation of k range, and in particular whether the

investigation relates to pre-edge analysis, edge profile,

XANES structure, conventional XAFS k ranges etc. Disper-

sion between pixels and angles is more significant at medium

and higher k, and less significant towards low k. Equally, the

largest effects of self-absorption and attenuation are around

the white line and for low-k regions. So the most critical areas

which this analysis and code address and fix relate to low-k,

medium-k and high-k and they should address all of these

regions. In the pre-edge, there are major theoretical issues

which probably prevent any direct interpretation by theory or

following a transmission and absorption coefficient at this

time, and further work will be needed to explore this

(Chantler, 2019). In the edge profile there are certainly

additional systematics which are not addressed by this

processing; however, the approach and software should apply

to all XANES and XAFS analysis. In particular, we provide

one general inversion expansion appropriate for the edge and

near-XANES region and one that is more accurate for the

longer XANES and XAFS region. Both are efficacious.

Typical samples can approach three limits: thin samples,

thick dilute samples or thick concentrated samples. The ‘thin

limit’ has relatively minor corrections due to self-absorption

and attenuation effects, so while the current approach and

software are valid there may be only a small impact upon the

final structure determination and analysis. If the multiple

pixels display identical spectra, curves, offsets and slopes, then

the corrections are likely to be minor or the detector is at a

small solid angle to the sample. If the slopes look identically

like an absorption coefficient spectrum from a transmission

experiment, then the corrections are minor, but the approach

and software remain valid. However, even in the thin limit the

corrections and dispersion represented below can be large and

important for fluorescence analysis. Typical examples might be

thin unsupported samples below 1–5 mm or ultra-dilute thin

solution cells, e.g. less than a millimetre in depth.

Samples close to the ideal ‘thick limit’ would be very thick

copper foils, thick concentrated solutions with a high molarity

of metal atoms, or thin samples supported by a glass slide or

strongly absorbing support backing, e.g. for a microprobe. This

last case is fully covered by the approach and software

presented, in that the integrals do not need to include the

backing or support slide because they should not contribute to

the fluorescence signal. Of course, some support backing or

matrix materials can fluoresce at the absorption edge of the

active species, and if so must either be avoided (preferred) or

corrected for. While measurements in the thick ideal limit are

difficult or impossible to compare directly with a transmission

experiment, the corrections prescribed here are robust.

The other two ‘thick’ limits can be realized by: (i) moder-

ately thick copper foils; or (ii) moderately thick solution cells

with a certain molarity (e.g. 0.01–25 mM) of active metal

atoms. The example of Booth & Bridges (2005) corresponds to

the former interesting limit and our example herein corre-

sponds to the latter limit. Any intermediate samples would

also be strongly distorted by self-absorption and attenuation,

and all samples may be strongly affected by the dispersion

effects noted and regularly observed. Such limits can be

categorized by the total attenuation (�/�)(�t) of the sample

with a matrix, for example, and similarly by the component

relating only to the photoabsorption from e.g. the K edge of

interest from the metal atoms producing a fluorescence

photon, ð�=�Þ�peð�tÞ. In the first ‘thick’ limit, the two measures

are almost identical, and in the second limit, the first measure

can be very large while the second may be much smaller. In

both limits, large self-absorption and attenuation effects are

observed, large dispersion is observed between angles and

pixels, and the slopes should be dramatically distorted. The

approach and software presented here apply to both these

limits. The example given by Booth & Bridges (2005) relates

to (�/�)(�t) ’ 1 immediately above the edge, whereas our

example herein has (�/�)(�t) � 2.7 above the edge. Conver-

sely, the example of Booth & Bridges (2005) relates to

ð�=�Þ�peð�tÞ ’ 1 immediately above the edge, whereas our

example here has ð�=�Þ�peð�tÞ ’ 0.1 above the edge. Another

way of characterizing the magnitude of these effects is to

define � at the first peak or so above the edge. By this

measure, the example of Booth & Bridges (2005) relates to

� ’ 0.2, whereas our example herein uses � ’ 0.5.

In general, care should be taken to ensure that the

approximations, corrections and inversion are suitable for the

sample and geometry investigated. In the examples presented,

we use a Taylor series expansion in the detailed software

ansatz with a limit of convergence of order � ’ 1 and an

expansion of the exponential suitable across most samples.

One must be somewhat careful of the convergence and impact

of the treatment of the exponential for very thick samples, as

discussed below. Our self-absorption approach opens up new

opportunities for insight from any fluorescence data on any

beamline.

4. Experimental

Fluorescence and transmission XAS measurements were

taken simultaneously for two closely related organometallics,

bis(N-n-propylsalicyladiminato)nickel(II), herein denoted

n-pr, and bis(N-i-propylsalicyladiminato)nickel(II), denoted

i-pr, at the Australian National Beamline Facility, Tsukuba,

Japan. Solutions of each complex (15 mM) were prepared

using 60% butyronitrile (BCN) + 40% acetonitrile (ACN) as

the solvent to avoid microcrystallization at cryostat tempera-

tures, ca 80 K. The exact concentrations of the solutes were

15.33 (6) mM and 15.26 (3) mM, respectively, corresponding

to approximately 0.1% w/w or 1000 p.p.m. (parts per million)

of nickel in the sample.

The beam was incident upon the sample at 45�. Sample

(cell) thicknesses were 1.9577 (17) mm (i-pr) and

1.981 (2) mm (n-pr) [Table 3, column 4 in the report by

Chantler et al. (2015)]. The frozen solutions were contained in

cells fashioned from a 25 � 2 mm Teflon pellet, designed to

allow a 1.5 � 2 mm X-ray beam to pass through. Kapton

adhesive tape and a light film of silicone grease were used to
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minimize the risk of the solution leaking between cells. The

distance between the sample and the fluorescence detector

elements is 107 (2) mm. A detailed schematic of the trans-

mission experiment with accurate distances can be found in

Fig. 5 of the work by Chantler et al. (2015). Table 1 provides

the overall experimental variables for the extremely important

optical path elements upstream and downstream of the

sample.

A 36-element Ge planar detector (EURISYS EPIX 36-64-

7-ER) was used to collect the fluorescence. The detector

contains 6 � 6 channels forming a square area, with each pixel

capturing an area of 8 � 8 mm. The output file runs from

channels 0 to 35, with 0 being the top downstream end and

incrementing horizontally. The approximate gap between the

active area of each channel is 0.4 mm, so the separation of

pixel centres at the detector surface is 8.4 mm. The central

position of the detector is aligned to be �45� to the solution

cell or �90� to the incident beam. Three pixels were unre-

sponsive and are not propagated (Chantler et al., 2015). The

detector geometry is presented in Fig. 1. Simultaneous data

collection in both modes is important because previous XERT

(Chantler et al., 2001) and hybrid (Chantler et al., 2015)

analyses have considered concentrated samples and this gives

a critical comparison of fluorescence with transmission in a

regime where both methods are competitive.

5. The self-absorption functional

X-ray absorption for transmission measurement is given by

the Beer–Lambert equation

It ¼ I0 exp �ð�=�Þð�tÞ½ 	; ð1Þ
where I0 is the intensity of the incident X-ray beam, (�/�) is

the mass attenuation coefficient of the absorbing material, � is

the density of the material and t is the thickness of the

material. We cast the formula into a form where the quantities

(�/�) and (�t) are clearly measurable. For a well defined

ordered solid (foil, copper, crystal plate) the characterization

of the sample by mass M and cross-sectional area A defines an

average M/A = (�t) integrated column density. Relative to this

average, the local (beam spot) (�t) integrated column density

can be (experimentally) well defined. On changes of

temperature, the integrated column density is normally

unchanged, whereas the density can change dramatically (a

few % or more for solids). Conversely, we can measure the

map of thickness t with a micrometre or profilometer but we

will not know the density. Voids, bubbles and roughness would

then yield a large error in the determination of e.g. the linear

attenuation coefficient �. Similarly, if we have a uniform

solution, liquid or frozen, to first order the cell area may be

constant and uniform including with temperature changes,

whereas the density is not. The integrated column density (�t)
remains characterizable, and (�/�) is therefore measurable

and an intrinsic property of the system like barns per atom.

Theoretically, we can have predictions of the absorption and

attenuation coefficients assuming a theoretical density.

However, the core theoretical predictions of FEFF,

EXCURVE, FDMX, FFAST etc. are in barns per atom, or in

the case of the mass absorption coefficient (�/�)pe in cm2 g�1.

The most direct comparisons with theory relate to (�/�)pe or

(�/�).

We use a derivation suitable for development and applica-

tion to experimental data (cf. e.g. Pfalzer et al., 1999). The

equations within SeAFFluX are based on the (core) self-

absorption functional,

If ¼
fI0�ð�=�Þ�pe=ð4� cos �incÞ

ð�=�Þ= cos �inc þ ð�f=�Þ= cos �out

� 1 � exp � ð�=�Þ ð�tÞ
cos �inc

� ð�f=�Þ ð�tÞ
cos �out

� �� �
; ð2Þ

where I0 and � are as defined in equation (1), f is the fluor-

escence yield [usually for the specific fluorescence spectrum

given by the region of interest (ROI), e.g. K� fluorescence],

the asterisk indicates that only the component absorbed in the

active centre producing a fluorescent photon is relevant, ‘pe’

signifies that only the photoelectric absorption coefficient is

considered, � represents the solid angle subtended by each
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Table 1
Estimated attenuation contributions by the background absorbers using FFAST theoretical data of X-ray mass attenuation coefficients, and the
geometry of the experimental setup.

For fluorescence geometry one needs to separate the incident flux at incident energy through the upstream path lengths, from the fluorescent emission path lengths,
hence the parameters displayed in the table. The path lengths were determined from the measured geometry of the experimental set-up.

Background absorber Chemical formula
Density
(g cm�3)

Path length
(cm)

(�t)nominal

(g cm�2)
(�/�)FFAST
(cm2 g�1) (�/�)(�t)FFAST

Upstream, incident E, e.g. 8.45 keV
Air N2 (78%) + O2 (21%) + Ar (0.93%) 0.0011 28.9 (6) 0.03179 7.696 0.2447
Detector gas N2 0.0012 19.0 (1) 0.02280 6.171 0.1407
Kapton (polymide) C12H10N2O5 1.42 0.010 (1) 0.0142 5.610 0.0797
Silicone (adhesive) CH3—Si2O2—C4H9 0.968 0.0060 (6) 0.00581 22.29 0.1295
He gas (cryostat) He 0.0001785 1.1 (1) 0.000196 0.2633 0.0000516
Downstream, fluorescent E, Ni K� 7.39 keV
Air N2 (78%) + O2 (21%) + Ar (0.93%) 0.0011 8.2 (1) 0.00902 11.47 0.1035
Kapton (polymide) C12H10N2O5 1.42 0.0060 (6) 0.00852 8.305 0.0708
Silicone (adhesive) CH3—Si2O2—C4H9 0.968 0.0060 (6) 0.00581 32.59 0.1893
He gas (cryostat) He 0.0001785 1.1 (1) 0.000196 0.2932 0.0000575
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detector (pixel), �inc is the incident angle of the X-rays on the

sample relative to the normal, �out is the angle of emission of

the fluorescent radiation from the sample relative to the

normal, (�f/�) represents the mass attenuation coefficient of

the material at the energy of the fluorescent photon, t repre-

sents the sample thickness and If is the total number of

fluorescence photons produced in a small solid angle �
centred on �out [cf. Chantler et al. (2012), Troger et al. (1992)

and Booth & Bridges (2005)].

Since each detector pixel represents a different �out from

the sample surface, there will be a different self-absorption

functional for each pixel. This is not simply an overall scaling

factor as some simpler models have used, but an energy-

dependent functional since (�/�) is a function of energy. With

the self-absorption functional, we define and constrain the

common parameters across all pixel measurements and

remove this effect from our spectra, hopefully yielding data

proportional to ð�=�Þ�pe, incorporating the results of Chantler

et al. (2012) into the new software package SeAFFluX to

correct for this systematic self-consistently. Chantler et al.

(2012) did not attempt to remove the self-absorption; instead,

they determined a corrected mean of the pixel spread, with a

large component of self-absorption remaining in the fluor-

escent spectra.

In a standard XAS experimental setup, we have a good

measure of the flux entering the system by using an ion-

chamber detector at the start of the beamline. With careful

attention to experimental details, we can then compare this

flux with the intensity of radiation detected at the end of the

beamline and correct for systematic losses. To correct for the

upstream attenuation, we provide the following functional:

If

I0 monitor

� ������
A

¼ If

I0

1

"monðEÞ
� �

A

exp

 
� ð�=�Þ ð�tÞ½ 	air

cos �air

� �
A

� ð�=�Þ ð�tÞ½ 	w
cos �w

� �
A

� ð�=�Þ ð�tÞ½ 	m
cos �m

� �
A

� ð�=�Þ ð�tÞ½ 	c
cos �c

� �
A

!
; ð3Þ

where If and I0 are as defined in equation (2), " represents the

overall quantum efficiency of the detectors, �air represents the

incident angle of the radiation to the air (always perpendi-

cular), tair/cos �air represents the path length that the photons

take through air between the sample surface and the front face

of the detector, and similarly for any window materials w, for

the monitor gas path m and for the cryostat or other gas c. A

common setup uses silicone adhesive on Kapton (polyimide)

windows. The subscript A indicates that this equation

describes absorption (transmission) components, in this case

upstream of the sample photoabsorptive event. The (�/�)

terms represent the mass attenuation coefficient of each

material and are functions of energy. The experimental

thicknesses and densities were measured to a good accuracy

(Chantler et al., 2015).

Signal is lost due to attenuation through the air path,

Kapton tape, detector windows and other materials in the

experimental setup. If the X-ray photons pass through a

certain thickness of any particular medium, then some fraction

of them will be attenuated and not reach the detector.

A second functional is required to account for fluorescent

photons emitted from the sample surface. In ‘transmission’

mode all experimental components are exposed to some

fraction of the incident radiation from the synchrotron source.

Thus, all experimental components will be exposed to the

monochromatic source radiation, at whatever energy is being

produced by the source. The experimental transmission setup

is arranged in a linear fashion, and a significant amount of

radiation is transmitted through the sample. Conversely, in

‘fluorescence’ mode all experimental components downstream

from the sample, towards the fluorescence detector, are

arranged perpendicular to the path of the incident source

radiation (Fig. 3). Hence, components downstream from the

sample are only exposed to radiation at specific fluorescence

energies. This means that equation (3) applies to all compo-

nents in transmission mode (including upstream and down-

stream components), and for upstream components similarly

for both transmission and fluorescence. A second functional

considering elements downstream of the sample, that are only

exposed to fluorescence radiation, is given by

If detector

I0 monitor

� ������
measured

¼ If

I0 monitor

� ������
A

"detðEf Þ
	 


F

� exp

 
� ð�f=�Þ ð�tÞ

	 

air

cos �air

� �
F

� ð�f=�Þ ð�tÞ
	 


w

cos �w

� �
F

� ð�f=�Þ ð�tÞ
	 


m

cos �m

� �
F

� ð�f=�Þ ð�tÞ
	 


c

cos �c

� �
F

!
; ð4Þ

where the symbols remain the same as before. In addition,

(�f/�) represents the mass attenuation coefficient at the

energy of the K� fluorescence photon and the subscript F

indicates that this equation describes the components of

fluorescence photon attenuation, i.e. downstream interactions

towards an arbitrary fluorescence detector.

Equation (4) is not a function of energy [unlike equation (3)

per se] but it is a function of geometry, source and angle, and

hence of pixel or detector segment. In equation (3), all values

for � are constant (ca 0� or 45�, plus offsets accounting for

experimental alignment). This is not the case for equation (4),

since the downstream fluorescence detector has multiple

pixels at different relative angular offsets. Often, the centre of

the detector is aligned to be 90� relative to the path of the

monochromatic source radiation. The different angular offset

for each pixel results in a different path-length term, t/cos �,
and hence a different self-absorption factor for each pixel.

There is a symmetry of response for pixels above and below

the central line, but in general each pixel has a different

correction factor. Variations in amplitude and spectral struc-

ture for a given pixel or solid-angle detector can arise from:
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(i) ["det(E)/"mon(E)] overall detector efficiency for each

element [equation (3)], including variations in the inelastic

peak and shape with e.g. scattering angle and how well the

detector and pixel definitions of the ROI are set up for each

channel, including for example if the ROI values are set

poorly enough to include significant but varying percentage

contributions from the fraction of characteristic K� radiation,

assuming that the ROI was set for the K� fluorescence.

(ii) A correction for dead time is assumed correct to a high

level and without significant error, though if there are wide

variations in count rate this would also affect the effective

efficiency of a pixel unless corrected for in the usual manner

(as done with this data set).

(iii) A subtlety relates to the ROIs cross-collecting e.g. some

of the elastic scatter peak or the small Compton scattering

shoulder, captured within the ROI window (which depends on

the width of this peak, the angle and the ROI, and thus varies

between pixel elements).

In principle, significant issues or problems of the above

types should have been addressed by the experimental setup,

pixel calibration, dead-time processing and ROI definitions

well before data collection. In practice, all data sets have such

limitations, but hopefully at a minor or negligible level. For the

current data sets, the reference transmission data include all

attenuation corrected for the very dominant matrix back-

ground (Chantler et al., 2015), and the background attenuation

from inactive orbitals and non-nickel atoms has been

(roughly) subtracted for detailed comparison. We do not go

into the details and limitations of such procedures here. For

the fluorescence data, however, the tail below the edge is

presumably not fluorescence photons because there is no

significant photoelectric absorption coefficient below the edge

to the continuum. There can of course be some excitation to

an excited bound state for the pre-edge, which could relax with

the production of some fluorescence but at a different energy,

and the rest of the photoabsorption is to L or M shell electrons

which will relax without production of a K� photon. Hence,

the background signal is likely to be e.g. affected by the ROI

and perhaps indicative of a small scattering shoulder accepted

by the ROI [points (i) and (iii) above]. These should not be

background-subtracted in the same manner as for transmis-

sion data because the cause and shapes are different. It has

been claimed that they should be subtracted as per standard

transmission spectra processing, either by average or for each

individual pixel. This also is a poor approach, but a general

empirical subtraction is of course possible. Some workers

arbitrarily subtract a constant offset for this purpose, but if

such a peak is e.g. the elastic peak, then a constant subtraction

is not very appropriate.

Most older detectors and beamline collection stations

define an ROI and hence cannot explicitly correct for this.

Some newer full-spectrum analysis can fully address this by a

complete mapping of the scattering functionals, but this is

quite a laborious process and rarely performed. In our

example, we do not subtract in advance but use the full set of

data to investigate the functionality. Whereas in Fig. 1 this

small background looks fairly flat and uniform, it does not

actually need to be subtracted until one extracts the � from

the absorption coefficient spectra. Conversely perhaps, Fig. 4

emphasizes the significance of the different slopes above the

edge: by normalizing to the white line and plotting lower

ranges of energy, this enhances the apparent but not the real

effect. The correct approach is to see the impact of any of

these systematics on the SeAFFluX-corrected spectra, before

processing to �. What we will find is that the spectrum is well

corrected for this variation and any such concern can be

removed after inversion and processing for self-absorption.

One might indeed argue that any photons, scattered or

otherwise, will be subject to the same downstream energy self-

absorption, though perhaps with slightly different energies

and coefficients, so that it is no surprise that the software and

method are effective here too. We want a robust solution

which works effectively for most beamlines to high accuracy,

and we demonstrate that herein.
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Figure 3
A schematic diagram of the fluorescence detector geometry.

Figure 4
Fluorescence spectra for the nickel i-pr complex extended to higher
energy. The increasing dispersion with energy is particularly evident
across the larger energy range. Detector efficiency normalization is not
sufficient to remove the large self-absorption signature and systematic
from the spectra. An overall scale factor ai is intrinsic to the fluorescence
data because of the pixel efficiency, as discussed in the text. The colour
scheme is consistent with previous plots.
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(iv) The dominant effect after the pixel/amplification effi-

ciency is the absorption and self-absorption corrections,

especially including the detailed geometry.

6. Inversion in X-ray fluorescence analysis

Since it is ð�=�Þ�pe that we ultimately want to extract from our

data, we recast the previous formulae to reflect this inversion.

To extract ð�=�Þ�pe or � from a fluorescence measurement, one

must invert the above equations, and we look at the final

observed measured ðIf detector=I0 monitorÞjmeasuredi
for each pixel i

from equations (2), (3) and (4):

If

I0

� ������
correctedi

¼ If detector

I0 monitor

� ������
measuredi

"monðEÞ
"detðEf Þi

� �
4�

f�i



"

exp

 
� ½ð�f=�Þ ð�tÞ	air

cos �air

� �
F

� ½ð�f=�Þ ð�tÞ	w
cos �w

� �
F

� ½ð�f=�Þ ð�tÞ	m
cos �m

� �
F

� ½ð�f=�Þ ð�tÞ	c
cos �c

� �
F

!#
i



"

exp

 
� ½ð�=�Þ ð�tÞ	air

cos �air

� �
A

� ½ð�=�Þ ð�tÞ	w
cos �w

� �
A

� ½ð�=�Þ ð�tÞ	m
cos �m

� �
A

� ½ð�=�Þ ð�tÞ	c
cos �c

� �
A

!#
; ð5Þ

If

I0

� �����
correctedi

¼ ð�=�Þ�pe= cos �inc

ð�=�Þ= cos �inc

	 
þ ð�f=�Þ= cos �out

	 
� �
i

� 1 � exp � ð�=�Þ ð�tÞ
cos �inc

� ð�f=�Þ ð�tÞ
cos �out

� �� �
i

:

ð6Þ
Most of the terms in equation (5) are defined or measured

and are smooth background functions of energy. The detector

efficiencies are complex and pixel-dependent and are retained

as an array of fitting coefficients. Potential challenges lie in

equation (6) (Booth & Bridges, 2005), because ð�=�Þ�pe

appears as stated, but is also included in ð�=�Þ = ð�=�Þ�pe

+ ð�=�Þ�scat + ð�=�Þy in the denominator and in the expo-

nential, where * refers to the active electrons in the active

orbital and y refers to all other atoms (matrix, solvent etc.) and

orbitals. Only the (mass) photoabsorption coefficient for the

electrons in the active orbital can lead to fluorescence.

Equation (6) is noted to be formally not invertible. Indeed, in

a pure monatomic sample like a metal foil, where ð�=�Þ�pe �
ð�=�Þ�scat + ð�=�Þy + ð�f=�Þ cos �inc= cos �out, the XAFS oscil-

lations can be (almost) completely damped to zero, in which

case there is no signature for the XAFS oscillations or for �, at

which point the equations are indeed formally not invertible.

In such cases there is no XAFS. However, in almost all real

cases the equation is invertible.

Here, we are deriving and correcting ð�=�Þ�pe and not

directly � (Booth & Bridges, 2005) for three reasons. Firstly,

measurables from theory relate to ð�=�Þ�pe. Secondly, we may

wish to recover signal just below the edge. Thirdly, different

analyses and expressions use the edge step or a spline or an

atomic like spectrum in the denominator for � and we wish to

avoid those concerns here, which would change the scaling and

the error correction. However, one convenience of the �
prescription is that it normalizes for a scaling error implicitly.

For the general case we expand equation (2) (see

Appendix A):

If

I0

� �����
corrected

¼ ð�=�Þ�pe

ð�=�Þ�pe þ ð�=�Þother

�
 

1 � exp

(
�

ð�=�Þ�scat þ ð�=�Þy
h i

ðptÞ
cos �inc

� ð�f=�Þ ðptÞ
cos �out

)

� exp � ð�=�Þ�peðptÞ
cos �inc

� �!
: ð7Þ

For faster convergence of the expansion, we can recast this

in terms of the baseline, atomic or non-oscillatory XAFS

ð�=�Þ�pe;noosc = �a=�, with ð�=�Þ�pe = ð�=�Þ�pe;noosc + ð�=�Þ�pe;osc =

�að1 þ �Þ=�, where the oscillatory components are given as

ð�=�Þ�pe;osc = �a�=�. Then (see Appendix A) the expansion can

be phrased around

If

I0

� �����
corrected

¼ ð�=�Þ�pe;noosc þ ð�=�Þ�pe;osc

ð�=�Þother þ ð�=�Þ�pe;noosc þ ð�=�Þ�pe;osc

�
 

1 � exp � ð�=�Þother þ ð�=�Þ�pe;noosc

	 
ðptÞ
cos �inc

( )

� exp � ð�=�Þ�peðptÞ
cos �inc

� �!
: ð8Þ

Incidentally, in units based on Booth & Bridges (2005) this can

be represented as

If

I0

� �����
corrected

¼ �að1 þ �Þ
�þ ��a

� 1 � exp � �t

cos �inc

� �
exp � �a�t

cos �inc

� �� �
:

ð9Þ
The pixel-dependent dispersion is seen by all �out terms in all

equations, and especially in (�/�)other and � in the above

equations. The so-called self-absorption is given by the (�f/�)

terms. Effective inversion requires all terms of all equations.

The details of our inversion methodology are presented in

Appendix A. We recast equation (7) in terms of ð�=�Þ�pe;osc =

ð�=�Þ�pe� and outline the second- and third-order Taylor

expansions around ð�=�Þ�pe;osc = 0. We make the simplifying

approximation to separate out the exponential in equation (7)

and divide through by this term as a second step. As indicated

in Fig. 6, this does not introduce significant error into our

result. Important advantages are that the inversion is

presented in terms of the full ð�=�Þ�pe coefficient, or the

oscillatory component of the coefficient; that it links directly

to theoretical coefficients; and that the inversion is for the first

time directly comparable with the transmission raw data. It
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also enables direct extraction of � but without a range of

limiting assumptions.

7. Self-absorption modelling: scales and logic for a
particular example

The application of equation (3) to fluorescence data produces

an energy-dependent functional in the detected spectra of 33

spectra (in our test examples), all bunched together at a

reference point on the left, which then ‘fan out’ at higher

energies due to their different gradients arising from equa-

tions (5) and (6). We consider the location of Bragg glitches

(monochromator three-beam diffraction locations for the

monochromator crystal) and remove them accordingly in the

initial processing (Appendix B). A simple processing

normalization is illustrated in Appendix C.

Consider the dispersion of the pixel responses, even after

normalization, across an extended range of energy, as seen in

Fig. 4. The theory implemented in the SeAFFluX package is

based on equations (2), (3) and (4). The angle of incidence on

the square-planar detector, �out, can be separated into hori-

zontal and vertical components relating to the location of each

detector pixel individually. The horizontal component is given

by �out, h = 45� + tan�1(nC/L), where n is the number of

horizontal pixels from the plane of incidence, C is the distance

between pixels and L is the separation between sample and

detector. Note also that a small offset from 45� may be

necessary due to misalignment. The angle is given by cos�out =

cos�out, hcos�out, v. Therefore, the vertical component is given

by �out, v = tan�1(mC/L), where m is the number of pixels from

the vertical plane of incidence. Equation (3) was extended

from Chantler et al. (2012).

Fig. 5 illustrates the predicted effect of self-absorption and

attenuation on the detected fluorescence spectra using a

simple simulation of a reference nickel spectra from the

FFAST tabulation (Chantler, 1995) as detected by six hori-

zontally aligned detector pixels, as opposed to the simplified

method presented in Appendix C. The theory here predicts

the rising trend with energy and the increasing dispersion

between pixels at higher energies. This is a significant proof of

concept. We can therefore proceed to invert the self-absorp-

tion and attenuation systematic using SeAFFluX. This must

include all of the above equations, or it may be neither

predictive nor invertible.

Each pixel spectrum in the fluorescence detector has been

fitted with an independent overall scaling factor. Thus, the

final spectra are not absolute but presented on a relative scale,

unless the spectrum is calibrated independently, for example

using XERT. In addition to these overall scaling factors, two

small offsets are fitted to account for potential misalignment

between the fluorescence detector and the incident fluores-

cence beam (nominally at 45� in the horizontal and 0� in the

vertical). All other parameters are given by experimentally

measured distances/thicknesses, with uncertainties. These

additional coefficients (air path, window and other thick-

nesses, etc.) could be fitted. However, we find that the

measurements appear quite accurate within their uncertain-

ties, so we can proceed accordingly.

The y-axis scale in the reduced data becomes either a scaled

aið�=�Þ�peð�tÞ or ð�=�Þ�peð�teffectiveÞ (Figs. 4 and 11). Because of

the relative efficiencies of the detectors and any uncertainty in

the solid angle and sample depth, this scale cannot have the

same meaning as in transmission measurement. The set ROI

(upper and lower level discriminators), which is typical of

most fluorescence measurements at most XAS beamlines and

other applications, ideally excludes any matrix absorption and

scattering, any elastic scattering peaks, any non-active atoms

in the molecule or solid and any background attenuation from

other orbitals. So in the one-particle approximation

(neglecting shake etc.), the measured fluorescence signal is

ð�=�Þ�pe. Representing If /I0, the scale must be dimensionless,

just like the logarithm in the transmission measurement. This

contrasts with transmission measurement which includes all

attenuation processes from active orbitals, background orbi-

tals, inactive atoms in the molecule or solid and any matrix

(�/�) – but of course only measures the signal in the forward

(and backward) directions.

In transmission, the value of (�/�) can be determined on an

absolute scale directly interpretable from the full integrated

column density (�t) of the sample. In fluorescence, at best this

relates to some effective depth and so, while hopefully linear

and proportional, it is a scaled relative measurement. Hence

fluorescence measurements in general can measure XAFS but

cannot (directly) measure absorption or attenuation coeffi-

cients on an absolute basis. As a rough approximation, one

might interpret teffective to correspond to a 1/e depth, which will

be energy-dependent but roughly corresponds to

teffective ’
1

�ð�=�ÞE;tot þ �ð�=�ÞF;tot

;

corresponding to the total attenuation of the incident and

fluorescent fluxes. This is certainly a functional of pixel angle.

Table 2 provides the scales relating to the inversion

procedure dealing with equations (6) or (8) for our test cases,

complementary with Table 1 for the overall experimental

variables and the inversion and modelling relating to equation
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Figure 5
A simple simulation of a nickel metal X-ray absorption spectrum (shown
in black, axis on right) transformed by self-absorption and attenuation
(colours matching pixels, scaled axis on left), using the same distances and
geometry as in the experimental data considered here. Oscillatory XAFS
is not simulated in this figure.
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(5). The columns illustrate energies at the fluorescence K�, at

an energy just below the edge, at an energy around the white

line, at the strongest peak of the data, at an intermediate value

of k and at a high-energy limit, to show the spread and trend of

the slopes. The first rows show the contributions of the solvent

and the nickel complex and the active Ni orbitals to the total

sample attenuation. The next section illustrates the rough

scale of the dispersion, both between pixels and angles and

across energy for the experimental data, which should of

course be consistent with the theoretical modelling. The next

three rows present the variation in the mass attenuation

coefficient which is being addressed, and the last row gives a

scale of the � across the spectrum, above the edge of course. It

is important to recognize that the effects addressed in this

example are large and significant, and need to be corrected for

to obtain reliable absorption data with which to compare

theory.

There are two key potential singularities in equation (8): the

presence of the oscillation in the denominator damping the

observed oscillation in the numerator, and the presence of the

oscillation in the exponential which dampens the effect of the

denominator but has been largely neglected in the application

of the theory. In Fig. 6 we compare the significance of the

influence of the denominator on the inversion using equations

(7) or (8):

1 þ ð�=�Þ�pe;osc

ð�=�Þother

� ��1

� 1: ð10Þ

Note that the denominator (�/�)other [or ð�=�Þother +

ð�=�Þ�pe;noosc] is always positive, but ð�=�Þ�pe;osc must oscillate

and so is generally positive and negative; in the illustration of

convergence, this is also defined by the accuracy or the (slight

over-)estimate of ð�=�Þ�pe;noosc. This scale of the ratio above the

edge (e.g. k = 0) (the fractional correction) is 1% for the white

line, has a background level of 0.4% and shows oscillations of

0.2–0.3% for the first peaks of the XANES/XAFS spectrum,

declining rapidly to below 0.1% for the main XAFS region

and beyond. Because the ratio is well behaved, the Taylor

series expansion converges very quickly (Figs. 7 and 8).

Although the real spectrum will have an XAFS oscillatory

component of approximately zero at high energies, the

software will be more or less robust in extracting this, but it

will have no significant effect on the relative magnitude of

oscillatory corrections in the result. As in Appendix A, we use

the exact solution of the expanded inverted denominator to

first and second order etc., but really first order is an excellent

approximation.

The first-order Taylor series expansion of the denominator

yields a quadratic, which is easy to solve and almost a full

correction for all pixels (in this case). This is proven by the

expansion to second order in the denominator, which yields a

cubic equation. The convergence appears complete. In the

presence of noise it is crucial to ensure that the experimental

data are normalized to the correct background level, and that

the scale of oscillations in the numerator therefore reflects the

scale of oscillations in the denominator.

To date, the other term in the inversion formula has not

been invertible and has usually been ignored. This is the

exponential. Remember that we have already corrected for all

upstream and downstream optical components and here only
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Table 2
Rough scales of attenuation in the 15 mM n-pr data set.

Scale of attenuation or absorption K�, 7.39 keV Below edge, 8.0 keV White line, 8.3 keV XAFS, 9.0 keV High E, 12 keV

(�/�)(�t)s, sample = solvent + Ni 3.3 2.7 2.49 1.89 0.76
Solvent (�/�)(�t)s 3.3 2.7 2.38 1.80 0.72
Ni (�/�)(�t)s 0.02 0.02 0.11 0.09 0.04
Ni K shell ð�=�Þ�peð�tÞs 0 0 0.09 0.08 0.03
Fluorescence pixel variation If /I0 0 0.001 0.018 0.019
Pixel variation, % of fluorescence signal If, i /If, j 0% 200% 220% 300%
Normalized with respect to white line If, i /If, j 0% 400% 1% 8–10% 25%
Increase from edge step (slope) If /If, edge 0% 12–20% 70%
(�/�)s ’ (�/�)pe, Ni complex, cm2 g�1 14 11 54 44 18
(�/�)scat, Ni complex, cm2 g�1 0.65 0.62 0.59 0.56 0.44
Ni K shell ð�=�Þ�pe, complex, cm2 g�1 0 0 47 38 16
Maximum � 0 0 0.5 0.01 0

Figure 6
For the i-pr data set, the fractional correction from the denominator term
in our test case is particularly small, even before Taylor expansion of the
ð�=�Þ�pe;osc term. The fractional correction is as given in expression (10), as
a function of energy and after inversion. Therefore, we expect the
inversion to be relatively straightforward and to converge quickly and
successfully, even though the exact solution of cubics and quartics can be
challenging for mathematical software in the presence of noise.
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consider the sample with matrix. In our test case, the matrix is

dominant so that the corrections are large and pixel depen-

dent. We examine the percentage error in the scaling with the

following expression [following equation (8)]:

 
1 � exp

(
�

ð�=�Þ�scat þ ð�=�Þy
h i

ð�tÞ þ ð�=�Þ�pe;nooscð�tÞ
cos �inc

� ð�f=�Þ ð�tÞ
cos �out

)
exp � ð�=�Þ�pe;oscð�tÞ

cos �inc

� �!



 

1 � exp

(
�

ð�=�Þ�scat þ ð�=�Þy
h i

ð�tÞ þ ð�=�Þ�pe;nooscð�tÞ
cos �inc

� ð�f=�Þ ð�tÞ
cos �out

)!
: ð11Þ

The exponential is not heavily affected by this because the

sample is ‘thick’. Indeed, although the path-length differences

are large, and the �out variation is large, the effect on the

inversion and on the ratio is less than 1% everywhere (Fig. 9),

including a 0.4%–0.8% background-level shift, a similar white-

line-level shift, and a relative shift of even the first few

XANES peaks of the order of 0.1%. Hence, this is both

directly invertible and has a minor effect on the relative

scaling of XAFS oscillations. The effect of the product of these

corrections is small (Fig. 10) and the inversion is well defined

and directly inverted, with an uncertainty less than 1% overall

for any pixel and actually much better than that if we are

considering a possible impact upon �.

For the system considered here, the neglect of the

denominator or exponential coefficients for the oscillatory

components in our inversion process introduced an error of

� 1%. However, the full inversion formulae have a great

advantage for high-Z inorganics and metals, for example. The

methodology is useful in general and makes a very significant

contribution to the investigation of different experimental

systems. Indeed, it has a very large effect on our spectra, but in

our case the fan of pixel spectra is due both to the self-

absorption and also the downstream absorption, with different

paths and angles to the pixels. We have emphasized these in

our equations and inversion formulae.

8. Results of spectral correction on dispersion and
variance of experimental data

This approach (Fig. 11) represents a dramatic improvement

over the previous ‘normalizing’ model, and also over earlier

approaches. The dispersion between pixels is almost elimi-

nated for both data sets, indicating that variations in slope and
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Figure 7
Fractional correction after first-order Taylor expansion correction
[equation (8)] for the i-pr data set. The base level is about 0.4%, the
white line peak is about 0.8% and the oscillations of the first few peaks
are of the order of 0.2–0.3%, just as expected from the ratio. The
inversion appears robust for all pixels to below a 0.1% level.

Figure 8
Fractional correction after second-order Taylor expansion correction
[equation (8)] for the i-pr data set. This is very similar to the result of the
first-order Taylor expansion in Fig. 7, and shows that the correction is now
well converged. The difference from the previous figure is not easily
visible by eye – the data have converged.

Figure 9
For the i-pr data set, the effect of the ð�=�Þ�pe;osc term on the exponential
component of the inversion formulae is �0.2% at the edge and 0.05% in
the oscillations and background [equation (8)].
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divergence with energy are caused by attenuation and self-

absorption. The minimal fitting coefficients imply that the

measured parameters are sufficiently accurate and physically

meaningful. The high-energy dispersion seen in the previous

‘normalizing’ model has been fully corrected.

The functional with energy now looks exactly like that for

transmission, with the gradient above the edge decreasing just

as for theoretical photoabsorption. Below the edge, the value

is flat and almost zero, as expected from the setup of the ROI,

so the ROI excludes most other fluorescence and scattering

processes. Any residual scattering background can be

removed following the ‘pre-edge background subtraction’

used in most XAS analysis, but noting that the specific func-

tional form may not be that from the inactive orbitals or

elements as per transmission background subtraction, and

may not be a constant as used in some software processing for

fluorescence data. Incidentally, the matrix contributions to the

transmission signal were quite large in this experimental

example but were subtracted accurately by careful measure-

ment (Chantler et al., 2015). Both transmission and fluores-

cence measurements were taken simultaneously on the same

samples.

Remarkably, we can superimpose the spectrum and detailed

structure of the oscillations from transmission over that of the

fluorescence corrected spectra, Fig. 11(c), without any cali-

bration from one to the other, and the overlap is almost

perfect. The magnitude and overall trend with energy are now

in excellent agreement with the absorption data in Fig. 2.

After correction for the dominant systematics, the dispersion

is greatly reduced and the spectral shape follows the absorp-

tion coefficient trend. This is a powerful demonstration of the

accuracy of the attenuation and self-absorption application,

and proves that such data can be used in XAS analysis as for

high-accuracy transmission data. We do not use a simplified

‘thin limit’ or ‘thick dilute limit’ formula for fluorescence to

impute validity of analysis (Chantler et al., 2012; Newville,

2004; Bunker, 2010). The effects we have presented and

observed, and which are almost universal in fluorescence data

collection (dispersion of pixel slopes with angle and energy,

and trending upward slopes), require all of equations (2), (3)

and (4). The thin sample limit has no rising slope nor any

dispersion between detector pixels: if you see a rising slope, or

dispersion between pixels, the thin sample limit is not

adequate or not sufficient. Any fluorescence data with any
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Figure 10
The combined effect of the second-order expansion of the expression (10)
correction multiplied by the correction in expression (11) for the i-pr data
set. Both corrections are small and well converged and the exact form of
the exponential is clear, yet the neglect of the oscillatory component
introduces a very minor change overall.

Figure 11
(a) Ni i-pr SeAFFluX-corrected spectra. (b) Ni n-pr SeAFFluX-corrected
spectra. (c) Panel (a) with a scaled overplot of the transmission XAS
spectra. A dramatic reduction in dispersion is observed in the
(SeAFFluX-) corrected spectra. Crucially, the fluorescence spectra (all
pixels are plotted) now display the correct decreasing trend at higher
energies consistent with the absorption data in Fig. 2, as illustrated in Fig.
11(c). The fluorescence scale has one free parameter ai corresponding to
the pixel efficiency normalization.
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dispersion between pixels, or any flat or rising slope above the

edge, implies that additional correction and equations are

required to explain the data and invert the attenuation effects.

The formulae herein allow the recovery of structure with

the correct magnitudes. Fig. 11 demonstrates excellent

agreement in processing for two independent data sets. Fig. 12

confirms that this agreement is consistent when the spectra are

converted to �: the angles are identical, the fluorescence

depths are identical, and the concentrations of matrix and

active species are almost identical. The 1/e depths depend

upon the whole sample, especially including the matrix, and

not just the absorber of the active edge. In other studies, the

apparent scale can be significantly influenced by the definition

of a reference pixel channel for normalization and the relevant

vertical and horizontal angles of that offset. The uncertainties

in the figure are not explained here and will be discussed

further elsewhere.

9. Discussion: theoretical and analytical insight

Booth & Bridges (2005) wrote a landmark paper, and they

avoided the thick sample limit and provided functionals for �.

However, we have provided functionals directly correcting for

the mass absorption coefficient, the scaled equivalent or the

absorption coefficient for the active species, and have

provided software for the same.

Booth and Bridges also discussed potential inversion of

their (final) formula for �, which looks very little like ours.

Their inversion uses ð��ad= sin ’Þ � 1. To invert the equation

in general demands consideration of the remainder of the

optics, as we have discussed. To correct for absorptive effects,

one must consider them when they are potentially large, and

one should be able to prove this in comparison with the raw or

minimally processed data, without e.g. distortion from splines,

or denominators of the � transform being the edge-step height

rather than the theoretical atomic absorption above edge

background. We provide alternative formulae and Taylor

series expansions with exact solutions to second and third

order which converge, and we confirm and check these

compared with the ratio arising from the denominator and

from the exponential. In this way, we demonstrate the

magnitude in any data sets and the approach to convergence.

Hence, if perhaps the data are near a non-invertible singu-

larity (i.e. where no XAFS oscillations are measured), this will

be flagged in the analysis.

We have investigated a significant limit of large attenuation

and self-absorptive effects, especially towards the limit of large

solid angle and significant change of attenuating and self-

absorptive effects between pixels. The success of the approach

is proven by the causal nature of the enormous pixel variation,

and by the fact that the spectra compress almost perfectly by

applying the corrections explained by the equations above. If

we had ignored some key component of the absorptive

correction, then the pixels would not recover the same form

and shape, and would not recover the shape of the absorption

curve. In other words, neglect of key angle-dependent and

energy-dependent components of the optics would make the

equations non-invertible.

A reader from a biological background may be concerned

that this data set is ‘quite concentrated’ (15 mM or 0.1%)

compared with some fragile and dilute species, and (yet) has

increasing noise above k = 12. The data were collected on a

bending-magnet beamline, whereas current advanced beam-

lines can easily have 100� the flux, count and statistics. Much

lower concentrations are quite feasible with hybrid techni-

ques; indeed, we get promising results for 1.5 mM data in this

way, even at a bending-magnet beamline. Ergo, the community

should be encouraged to look at data even of dilute systems

beyond the XANES region: it is completely feasible to have

high accuracies on dilute data fully across the XAFS region in

both transmission and fluorescence at low concentrations, with

limits yet to be determined.

10. Conclusions

This work demonstrates that structural information can be

extracted from fluorescence spectra of at least the same

quality as transmission data, and both methods are fully valid

for 15 mM solutions or 0.1% w/w samples. This can apply to

samples of interest not well suited to transmission experi-

ments. The methodology presented in Section 6 is readily

adaptable to arbitrary samples of interest; different approx-

imations can be appropriate under different experimental

conditions. The results presented here are far from the limit of

what can be achieved with this technique, and we emphasize

the general applicability of this methodology. The example

considered and analysed in this paper is fairly dilute, towards

the ‘thick dilute limit’, but the same logic would equally apply

to the analysis of fluorescence spectra collected on a thick

metal foil, a sample with a support, or a thinner or more dilute

sample. Equally, the methodology presented here applies to

ð�=�Þ�peð�tÞ or ð�=�Þ�pe and can thereby be applied directly to

absorption-edge distortions and, according to the user’s

preference, can be pre-edge subtracted and converted to a

functional for �, as demonstrated here.
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Figure 12
Transmission versus fluorescence spectra. An excellent agreement is
found between the two spectra within the Hanning window, indicative of
the success of our self-absorption correction methodology. Some
discrepancies remain between the two spectra, particularly in the
application of background subtraction, edge removal and spline removal,
an observation made possible by our propagation of statistically robust
experimental uncertainties. A subsequent publication will present this in
detail and contrast the results of structural modelling of these two data
sets.
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We have presented theory and software for processing

multi-pixel fluorescence data for XAS and other techniques.

We have developed the theory and application of the

correction (inversion) of these systematics and of the inver-

sion formulae for self-absorption, and have applied them to

test cases with large matrix, upstream and downstream

contributions. This approach and theory are easily valid for

systems containing up to 1.5 mM or 100 p.p.m. of the active

absorber, but we expect much more with refinement of the

approach. Further work will explore this challenge in greater

detail, explain the estimation of uncertainty from such data,

and investigate structural modelling of this self-absorption

corrected data.

The software is available for download with this publication

as supporting information (Appendix D).

APPENDIX A
Self-absorption modelling

A1. Derivation of inversion of self-absorption functional

Previous work considered the ‘thin sample limit’ (Newville,

2004; Bunker, 2010) where the attenuation through the whole

sample at the given angles is small and

1 � exp � ð�=�Þ ð�tÞ
cos �inc

� ð�f=�Þ ð�tÞ
cos �out

� �� �

’ ð�=�Þ ð�tÞ
cos �inc

þ ð�f=�Þ ð�tÞ
cos �out

: ð12Þ

Equation (6) then becomes

ð�=�Þ�pe ¼
If

I0

� �����
corrected

cos �inc

ð�tÞ : ð13Þ

This ‘thin sample limit’ has no rising slope and no dispersion

between pixels, so in general this limit does not apply to any

real fluorescence data. Note, however, that for particularly

thin samples the (pixel or energy) dispersion can be domi-

nated by equations (3), (4) and (5) rather than (6). The

corresponding ‘thick sample limit’ (Troger et al., 1992;

Newville, 2004; Bunker, 2010) assumes that the exponential

goes to zero through the thickness of the material, so that

there can be no directly comparable transmission measure-

ment and equation (6) becomes

If

I0

� �����
corrected

¼
ð�=�Þ�pe

ð�=�Þ�pe þ ð�=�Þ�scat þ ð�=�Þy
h i

þ ð�f=�Þ cos �inc= cos �out

:

ð14Þ
If ð�=�Þ�pe � ð�=�Þ�scat + ð�=�Þy + ð�f=�Þ cos �inc= cos �out, the

sample is dilute and dominated by the matrix, solvent etc. (the

‘thick dilute sample limit’), and the XAS step and oscillations

are scarcely damped by the ð�=�Þ�pe in the denominator. In

general, the XAFS oscillations seen in transmission are

damped in fluorescence. In this thick dilute sample limit, the

XAFS oscillations are not dominant in the denominator and

the equation becomes invertible, if necessary, with

If

I0

� �����
corrected

¼ ð�=�Þ�pe

ð�=�Þother
1 þ ð�=�Þ�pe

ð�=�Þother

� ��1

;

ð�=�Þother ¼ ð�=�Þ�scat þ ð�=�Þy þ ð�f=�Þ cos �inc= cos �out;

If

I0

� �����
corrected

’ ð�=�Þ�pe

ð�=�Þother
1 � ð�=�Þ�pe

ð�=�Þother

� �
;

ð�=�Þ�pe

ð�=�Þother
’ If

I0

� �����
corrected

1 þ If

I0

� �����
corrected

� �
:

ð15Þ

A2. Inversion of equation (7)

Equation (7),

If

I0

� �����
corrected

¼ ð�=�Þ�pe

ð�=�Þ�pe þ ð�=�Þother

�
 

1 � exp

(
�

ð�=�Þ�scat þ ð�=�Þy
h i

ð�tÞ
cos �inc

� ð�f=�Þ ð�tÞ
cos �out

)

� exp � ð�=�Þ�peð�tÞ
cos �inc

� �!
; ð16Þ

where

ð�=�Þother ¼ ð�=�Þ�scat þ ð�=�Þy þ ð�f=�Þ cos �inc= cos �out;

ð17Þ

can be expanded by applying a Taylor series expansion around

ð�=�Þ�pe:

ð�=�Þ�pe

ð�=�Þ�pe þ ð�=�Þother
’ ð�=�Þ�pe

ð�=�Þother
� ð�=�Þ�pe

ð�=�Þother

� �2

; ð18Þ

exp � ð�=�Þ�peð�tÞ
cos �inc

� �
’ 1 � ð�=�Þ�peð�tÞ

cos �inc

þ ð�=�Þ�peð�tÞ= cos �inc

	 
2

2
: ð19Þ

This expansion will be appropriate for ½ð�=�Þ�peð�tÞ	= cos �inc <

0.2, or typically ð�=�Þ�peð�tÞ < 0.14 and/or ð�=�Þ�pe=ð�=�Þother <

0.2 with an error of the order of approximately 2–4% for this

first-order expansion. Higher-order expansions have a larger

circle of convergence.

Substituting back in,
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If

I0

� �
jcorrected ¼

ð�=�Þ�pe

ð�=�Þother
� ð�=�Þ�pe

ð�=�Þother

� �2
( )

�
 

1 � exp

(
�

ð�=�Þ�scat þ ð�=�Þy
h i

ð�tÞ
cos �inc

� ð�f=�Þ ð�tÞ
cos �out

)

� 1 � ð�=�Þ�peð�tÞ
cos �inc

þ ð�=�Þ�peð�tÞ= cos �inc

	 
2

2

( )!
:

ð20Þ

Rewriting in simpler notation,

a ¼ x

b
� x2

b2

� �

� 1 � exp �cd� de

f

� �
1 � d

g

� �
xþ d

g

� �2
x2

2

" #( )
;

ð21Þ

a ¼ If

I0

� �����
corrected

;

b ¼ ð�=�Þother;

c ¼
ð�=�Þ�scat þ ð�=�Þy
h i

cos �inc

;

d ¼ ð�tÞ;
e ¼ ð�f=�Þ;
f ¼ cos �out;

g ¼ cos �inc:

ð22Þ

Then solve for x = ð�=�Þ�pe.

A2.1. Quadratic approximation, first-order expansion of
denominator only.

If

I0

� �����
corrected

’ ð�=�Þ�pe

ð�=�Þother
� ð�=�Þ�pe

ð�=�Þother

� �2
( )

; ð23Þ

or

a ¼ x

b
� x2

b2

� �
: ð24Þ

Then solve for x = ð�=�Þ�pe.

A2.2. Cubic approximation, second-order expansion of
denominator only, ‘thick’ limit expansion.

ð�=�Þ�pe

ð�=�Þ�pe þ ð�=�Þother
’ ð�=�Þ�pe

ð�=�Þother
� ð�=�Þ�pe

ð�=�Þother

� �2

þ ð�=�Þ�pe

ð�=�Þother

� �3

; ð25Þ

or

a ¼ x

b
� x2

b2
þ x3

b3

� �
: ð26Þ

Then solve for x = ð�=�Þ�pe.

A2.3. Cubic approximation, first-order expansion of
denominator and exponential, ‘non-thick’ limit expansion.

If

I0

� �����
corrected

¼

ð�=�Þ�pe

ð�=�Þother
� ð�=�Þ�pe

ð�=�Þother

� �2
( )

�
 

1 � exp �
ð�=�Þ�scat þ ð�=�Þy
h i

ð�tÞ
cos �inc

� ð�f=�Þ ð�tÞ
cos �out

8<
:

9=
;

� 1 � ð�=�Þ�peð�tÞ
cos �inc

� �!
; ð27Þ

or

a ¼ x

b
� x2

b2

� �
1 � exp �cd� de

f

� �
1 � d

g
x

� �� �
: ð28Þ

Then solve for x = ð�=�Þ�pe.

A3. Inversion of equation (8)

A3.1. Re-casting in terms of an expansion of
ð�=�Þ�pe;osc ¼ ½ð�=�Þ�pe;noosc	�.

If

I0

� �����
corrected

¼ ð�=�Þ�pe;nooscð1 þ �Þ
ð�=�Þother þ ð�=�Þ�pe;nooscð1 þ �Þ : ð29Þ

Note

ð�=�Þ�pe;noosc þ ð�=�Þ�pe;noosc

	 

� ¼ ð�=�Þ�pe: ð30Þ

Define

x ¼ ð�=�Þ�pe;osc; ð31Þ

c ¼ ð�=�Þother þ ð�=�Þ�pe;noosc; ð32Þ

) If

I0

� �����
corrected

¼ ð�=�Þ�pe;noosc þ ð�=�Þ�pe;noosc

	 

�

ð�=�Þother þ ð�=�Þ�pe;noosc

	 
þ x
; ð33Þ

) If

I0

� �����
corrected

¼ ð�=�Þ�pe;noosc þ x

c
1 þ x

c

 ��1

: ð34Þ

Taylor expansion around x = 0 yields

If

I0

� �����
corrected

¼ ð�=�Þ�pe;noosc

c
þ x

c
� ð�=�Þ�pe;noosc

	 

x

c2
� x2

c2
;

ð35Þ

) If

I0

� �����
corrected

� ð�=�Þ�pe;noosc

c
¼ x

c
� ð�=�Þ�pe;noosc

	 

x

c2
� x2

c2
:

ð36Þ
Rewriting in simpler notation,

research papers

600 Ryan M. Trevorah et al. � Solving self-absorption in fluorescence IUCrJ (2019). 6, 586–602

electronic reprint



a� b

c
¼ x

c
� xb

c2
� x2

c2
: ð37Þ

Equivalently, in a cubic expansion:

a� b

c
¼ x

c
� xb

c2
� x2

c2
þ x2b

c3
þ x3

c3
� x3b

c4
; ð38Þ

a ¼ If

I0

� �����
corrected

; ð39Þ

b ¼ ð�=�Þ�pe;noosc: ð40Þ

The recommended order of operations for this inversion (and

the default mode in our software) is to begin by solving

equation (38) [cubic solution after expansion in terms of

ð�=�Þ�pe;osc]. This is then rescaled by the exponential term, also

using expansion in terms of ð�=�Þ�pe;osc. After this correction,

the data can be expressed in the most convenient form [most

likely ð�=�Þ�pe]. The fractional corrections for each of these

steps are illustrated in Section 7, as applied to our data.

This expansion will be appropriate for

ð�=�Þ�pe;oscð�tÞ=cos �inc < 0.2 and/or ð�=�Þ�pe;osc=ð�=�Þother < 0.2

with an error of the order of approximately 2–4% for

this lowest order expansion. However, it is possible to

approach limits of ð�=�Þ�pe;oscð�tÞ=cos �inc < 1 and/or

ð�=�Þ�pe;osc=ð�=�Þother < 1 where the correction is barely

convergent for higher orders of expansion, as discussed.

APPENDIX B
Identifying Bragg peaks following Section 7

We highlight two features in Fig. 13 at around 8.65 and

8.95 keV. These monochromator glitches can also be seen in

the ‘raw’ spectra in Fig. 1. These features are Bragg peaks,

which arise when multiple sets of Bragg planes within the

monochromator crystal are able to diffract X-rays of the same

energy, leading to a decrease or increase in the diffracted

intensity downstream towards the experimental sample

(Chantler et al., 2010; Chantler & Deslattes, 1995; Quintana &

Hart, 1995; Sutter et al., 2016; Bridges et al., 1991; Li et al.,

1994). This effect can be seen in both sample measurements,

although less clearly in the i-pr spectra.

Monochromator glitches are due to multiple-beam diffrac-

tion in the monochromator, in turn due to the azimuthal

orientation of the monochromator crystal(s). Whereas a well

formed transmission experiment should use matched detec-

tors and this effect should cancel, the energy-dependent effi-

ciencies of the upstream and downstream detectors, especially

in fluorescence, leave this uncorrected. It is common practice

to delete such channels, preferably after confirmation of their

origin. We comment that a more advanced approach is to map

them for each monochromator system and use this directly in

processing; this can be a significant limitation to continuing in

fluorescence measurement compared with transmission

measurement. One can have other Bragg–Laue peaks or

hollows from the sample, matrix or substrate diffraction, which

of course will not cancel in either transmission or fluorescence

measurement.

APPENDIX C
Normalization for detector efficiency, following
Section 7

Each pixel in the Ge fluorescence detector has a different

electronic characterization and possible variations in thick-

ness, different active depth and dead layers, different elec-

tronic preamplification, and ergo different efficiency ["det(E)/

"mon(E)]. Hence, the dispersion and variance seen across the

spectra in Fig. 1 are significantly reduced by normalizing each

pixel spectrum.

The results presented in Fig. 13 from pinning the normal-

ization to a reference channel of energy show significant

improvement. The oscillations above the absorption edge are

much more clearly defined. However, the spectra remain

inconsistent with significant dispersion in the pre-edge region,

increasing at higher energies. The colours of individual spectra

follow the pixel order and hence the position upstream or
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Figure 13
(a) The i-pr spectra normalized for detector pixel efficiency. (b) The n-pr
spectra normalized for detector pixel efficiency. Normalization for pixel
efficiency ["det(E)/"mon(E)] makes a significant improvement in the
dispersion between spectra. However, significant dispersion and variance
remain in the pre-edge region and increase at higher energies.
Furthermore, the spectral trend with energy is not in agreement with
the transmission data (Fig. 2). Typical applications of this limited
approach pin spectra at the edge or pre-edge and diverge away from this
empirical pin. This methodology is not sufficient for high-accuracy data
analysis.
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downstream. Clearly, the pixel position has a major pixel-

dependent effect which is a function of energy, and the

dispersion is not constant along the energy range. This beha-

viour is predicted by the �out term in equation (2), and is more

significant at greater energies (Fig. 4).

Furthermore, and perhaps more significantly, the forms of

the spectra do not agree at all, even qualitatively, with the

classic absorption coefficient trend of a decaying intensity with

higher energy after the absorption edge (Fig. 2), and so they

cannot represent the attenuation coefficient to better than a

20–50% approximation above the edge. Ergo, analysis

requires tools similar to those presented in this manuscript

and software.

APPENDIX D
Energy uncertainty in tabulated data, following Section
10

We include as supporting information two data sets that have

been processed with SeAFFluX. These data sets include

uncertainties on the energy points, which have been inter-

polated from the previously published transmission data. A

small energy offset was required in order to correctly align the

two data sets. This offset was 1.50 eV for i-pr and 0.25 eV for

n-pr. We also include the SeAFFluX code and installation

instructions.
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