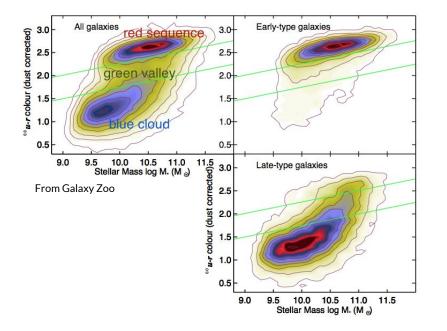


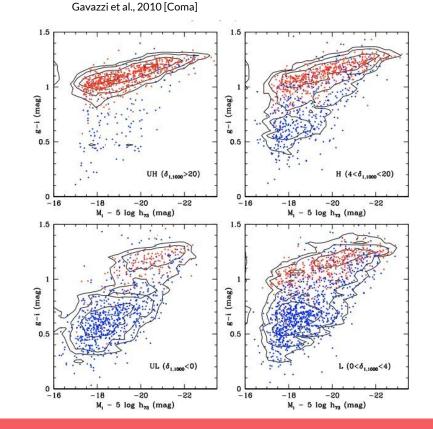
Star formation quenching in cluster galaxies from integrated and spatially resolved spectra

> Alessia Moretti, INAF-OAPD

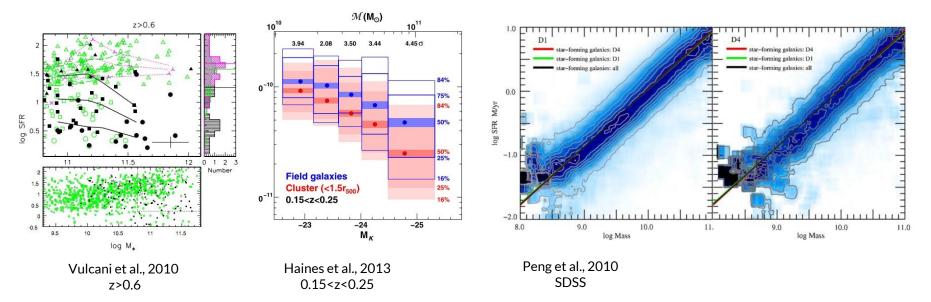
GASP team: **PI B. M. Poggianti** (INAF-OaPD)


C. Bellhouse (ESO) D. Bettoni (INAF-OaPD) A. Cava (Observatoire de Geneve) W. Couch (AAO) M. D'Onofrio (UniPD) G. Fasano (INAF-OaPD) J. Fritz (IRyA, UNAM) M. Gullieuszik (INAF-OaPD) G. Hau (ESO) Y. Jaffe' (ESO) S. McGee (University of Birmingham) A. Moretti (INAF-OaPD) A. Omizzolo (INAF-OaPD) A. Omizzolo (INAF-OaPD, Sp. Vaticana) M. Owers (Macquarie University) B. Vulcani (Uni Melbourne)

http://web.oapd.inaf.it/gasp/


Outline

- \rightarrow Galaxies and environment (color, SFR)
- \rightarrow The WINGS/OMEGAWINGS survey
- \rightarrow (OMEGA)WINGS results (MD relation, SFR-Mass)
- \rightarrow Quenching mechanisms and GASP motivation
- \rightarrow The GASP survey: prototypical JF and other animals
- \rightarrow GASP results (so far) and future


Galaxies bimodality & environment

High luminosity ET in place in all environments Low luminosity ET grow with LD (as LT disappear): RP?

Statistical properties of cluster galaxies

How does the SFR proceed with galaxy mass/environment? Is the quenching due to mass/environment/both? What is the mechanism acting in different conditions?

The WINGS/OmegaWINGS contribution

Fasano et al., 2002, Fasano et al., 2006, Moretti et al., 2014

 \rightarrow Started back in 2001 to fill the redshift gap between Virgo/Coma and high-z clusters.

 \rightarrow Survey of 76 X-rays selected clusters at z=[0.04-0.07] with <u>30' x 30'</u> FoV: B,V imaging

 \rightarrow 48 clusters have spectroscopic follow-up (~6000 redshifts, ~5300 SFH)

 \rightarrow Complemented by NIR/U imaging

 \rightarrow Images and catalogs available (VO tools)

The WINGS/OmegaWINGS contribution

Fasano et al., 2002, Fasano et al., 2006, Moretti et al., 2014

 \rightarrow Started back in 2001 to fill the redshift gap between Virgo/Coma and high-z clusters.

 \rightarrow Survey of 76 X-rays selected clusters at z=[0.04-0.07] with <u>30' x 30'</u> FoV: B,V imaging

 \rightarrow 48 clusters have spectroscopic follow-up (~6000 redshifts, ~5300 SFH)

 \rightarrow Complemented by NIR/U imaging

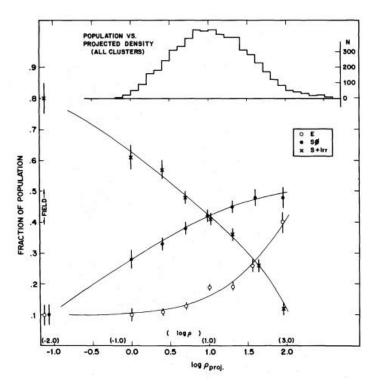
 \rightarrow Images and catalogs available (VO tools)

Gullieuszik et al., 2015, Moretti et al., 2017

 \rightarrow B, V imaging with OmegaCAM@VST to cover **1 sq. deg** around cluster centers -> beyond R_{200}

 \rightarrow 46/76 original clusters

 $\rightarrow 50\%$ completeness at V=23

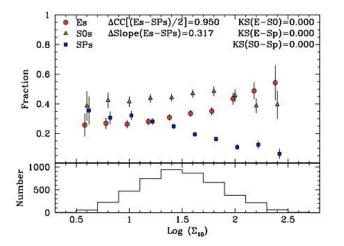

 $\rightarrow \sigma_v = [500-1300 \text{ km/s}]$

 \rightarrow Lx=[0.2-5.5 x 10⁴⁴ erg/s]

 \rightarrow 33 clusters have spec. Follow up (~18000) with 90% completeness at V=20 (7500 new members)

The cluster environment

MD relation

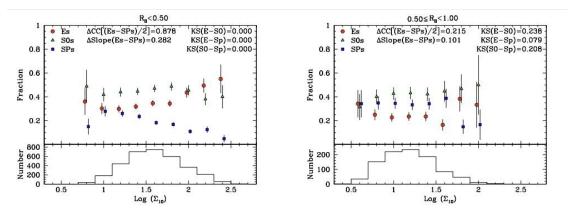


 \rightarrow ET galaxies dominant in high density regions (55 clusters)

Dressler, 1980

The cluster environment: WINGS results

MD relation in WINGS

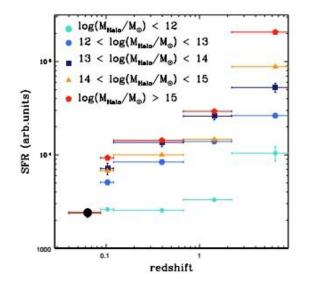

- \rightarrow ET galaxies dominant in high density regions (55 clusters)
- \rightarrow MD relation still holds

The cluster environment: WINGS results

MD relation in WINGS

 \rightarrow ET galaxies dominant in high density regions (55 clusters)

 \rightarrow MD relation still holds

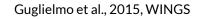

 \rightarrow MD relation disappears at large R

Global environment?

The WINGS results: SFR

SFR shows a steeper decline in clusters than in the field (not due to the mass)

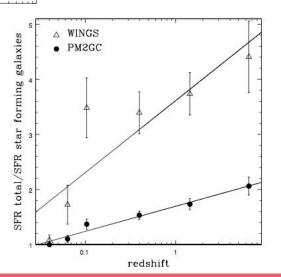
And this is true also if considering DM halo masses

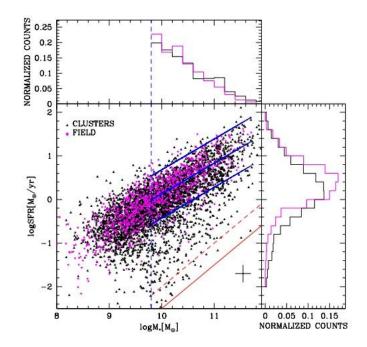

SFR at high z due to quenched galaxies (and even more so in clusters)

SFRD (M_o yr⁻¹ Mpc⁻³)

0.1

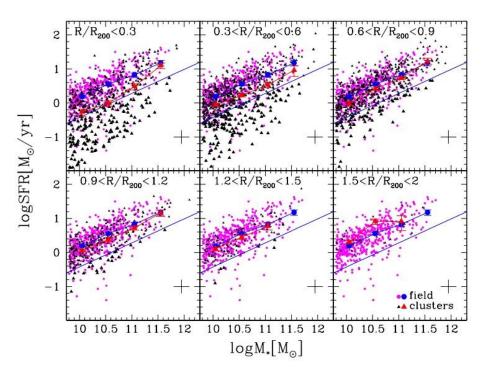
0.1


0.01

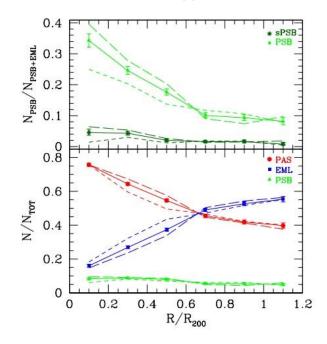

0

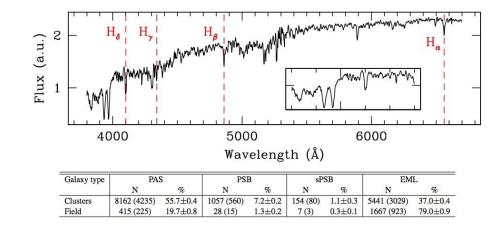
redshift

PM2GC
WINGS


Low-z clusters possess a population of transition galaxies, which are seen in the act of being slowly quenched (strangulation/starvation?)

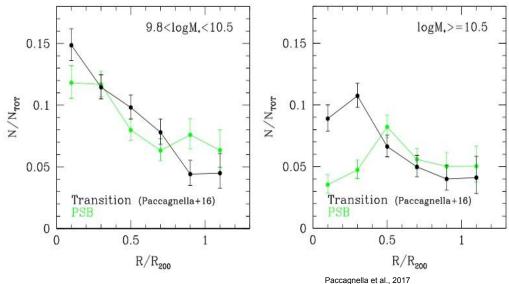
Paccagnella et al., 2016 OmegaWINGS

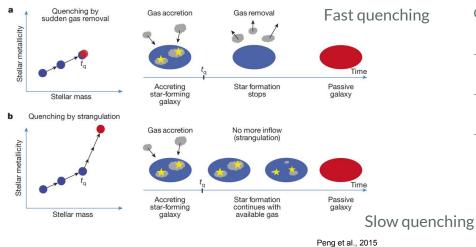

Low-z clusters possess a population of transition galaxies, which are seen in the act of being slowly quenched (strangulation/starvation?)


Transition galaxies are mainly found within $0.6R_{200}$ (30% of SF) where environment plays a major role

Paccagnella et al., 2016 OmegaWINGS

First characterization of PSB galaxies (tracers of fast quenching - 1 Gyr) in clusters out to $1.2 R_{200}$

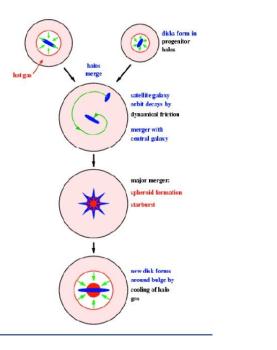




More frequent toward cluster centers and in more massive/relaxed clusters

If common progenitor, given the timescales the fast quenching is twice more efficient than the slow quenching channel in the build up of the passive population

~7800 local cluster galaxies (WINGS+OmegaWINGS) Spectral features analysis: PSB and transition galaxies show the same frequency (7.3% and 9%) The radial trend is similar for low mass galaxies High mass transition/PSB are missing in clusters cores


Quenching related to gas supply/removal

 \rightarrow RPS, strangulation (fast and slow gas-only removal)

 \rightarrow mergers, tidal interaction (gas and stars)

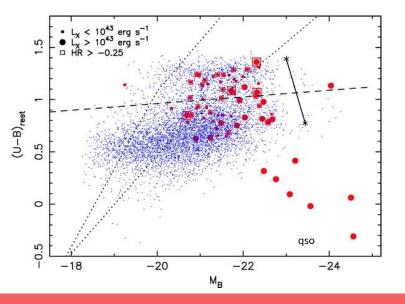
 \rightarrow internal mechanisms (AGN, stellar winds)

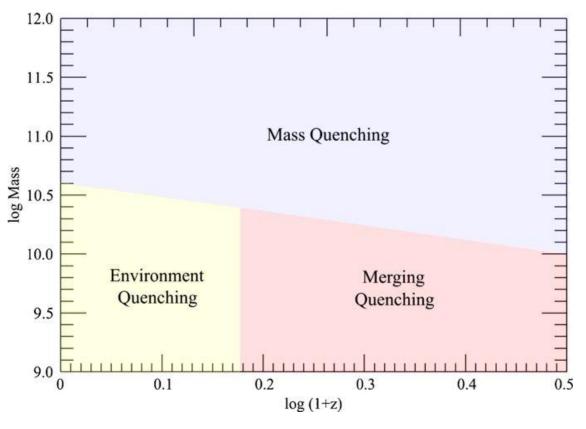
26000 SDSS galaxies Stellar metallicity analysis: Most galaxies with M<10¹¹ M $_{\odot}$ are quenched due to strangulation

Star formation induced by merger takes place not only in the center (gas inflows + ISM turbulence + fragmentation) Quenching related to gas supply/removal

 \rightarrow RPS, strangulation (fast and slow gas-only removal)

- \rightarrow mergers, tidal interaction (gas and stars)
- \rightarrow internal mechanisms (AGN, stellar winds)


"The great majority of X-ray AGN lie in luminous, red galaxies in and around the transition region between the blue cloud of star-forming galaxies and the red sequence. This finding is consistent with AGN activity being associated with the process that quenches star formation in massive galaxies."

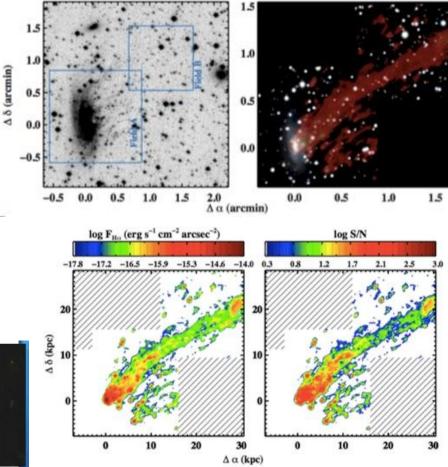

Nandra et al., 2006

[red] Chandra X-ray sources (AGN) at z=0.6-1.4 [blue] comparison sample from DEEP2 survey Quenching related to gas supply/removal

 \rightarrow RPS, strangulation (fast and slow gas-only removal)

- \rightarrow mergers, tidal interaction (gas and stars)
- → internal mechanisms (AGN, stellar winds)

At low redshift low mass galaxies are quenched due to environment, high mass due to mass quenching


Peng et al., 2010

Jellyfish galaxies

"Galaxies with clearly distorted images, with optical data resolving multiple filaments offset asymmetrically from the galaxy " [Smith et al., 2010, UV asymmetry]

Virgo

+ 60 kpc Hα tails in D110 (Coma) [Yagi et al 2007]

Owen et al., 2006; Cortese et al., 2007; Owers et al., 2012 - ACS data

The GASP survey [LP, PI B. Poggianti]: motivation

GAs Stripping Phenomena in galaxies with MUSE

The key drivers of GASP are:

- 1. measure the time-scale and the efficiency of the stripping phenomenon in galaxies as a function of galaxy environment and galaxy mass;
- 2. quantify the amount of stars formed in the stripped gas, contributing to the understanding of the formation of the intracluster and intragroup medium;
- 3. estimate the speed at which the galaxy moves in the IGM from the comparison between the velocity of the stripped gas and that of the main galaxy body;
- 4. identify the **physical process/es responsible for the gas outflow** among the possible external (ram pressure, tidal interactions, harassment, etc.) and internal (winds due to stars or AGN) mechanisms, clarifying where and how it happens;
- 5. monitor the evolution of the galaxies which are being depleted of their gas content, looking at their **transition from the blue cloud to the red sequence**;
- 6. derive the galaxy velocity and velocity dispersion maps, measure the total mass and Mass/Light ratio and estimate the **spatially resolved star formation history** and metallicity distribution.

The GASP survey: candidates selection

GAs Stripping Phenomena in galaxies with MUSE

→ Galaxies in different environments (clusters, groups, field+control sample)

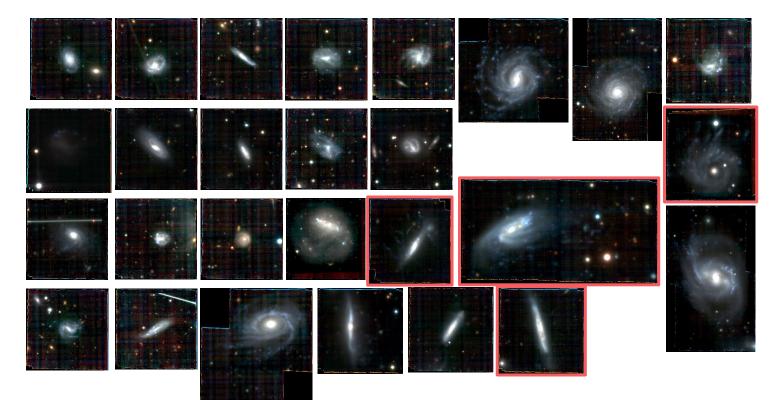
 \rightarrow Galaxies with different masses (from 10⁹ to 10^{11.5} M_{\odot})

 \rightarrow Galaxies with different stripping signatures (Jclass 1-5, taken from Poggianti et al., 2016)

 \rightarrow 114 [94+20] gx, 120 hrs, 2700s/pointing, 1e5 spectra/pointing

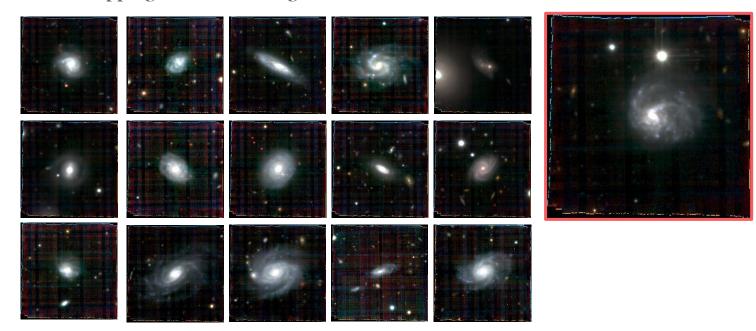
→ 0.2"/px, 2.5 A FWHM, 4700-9300

 \rightarrow Started in 2015, 50% observed

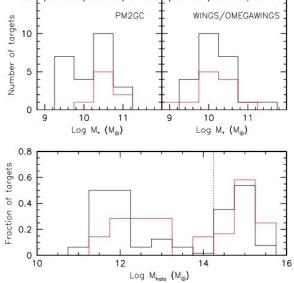

 \rightarrow Fov (1'x1')~60x60 kpc²

NB Target galaxies selected to have signatures of GAS-ONLY removal processes (no mergers, no tidal interactions)

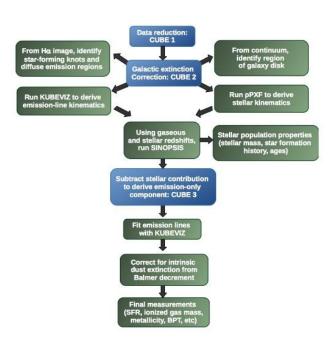
- 1. Debris trails, tails or surrounding debris on one side of the galaxy
- 2. asymmetric/disturbed morphology
- 3. Distribution of star forming knots/region suggesting induced SF on one side


The GASP survey: observed galaxies [clusters]

GAs Stripping Phenomena in galaxies with MUSE


http://web.oapd.inaf.it/gasp/index.html

The GASP survey: observed galaxies [groups/field] GAs Stripping Phenomena in galaxies with MUSE

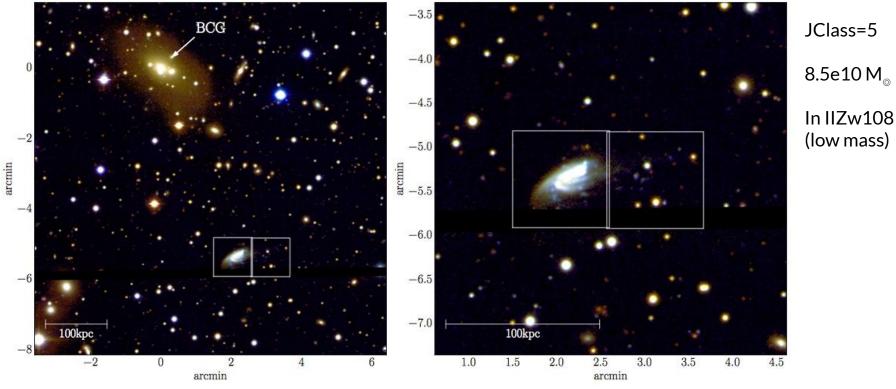

The GASP survey: observed galaxies [control sample] GAs Stripping Phenomena in galaxies with MUSE

15 PM2GC Number of targets 10 0 10 11 9 9 Log M. (M.) 0.8

The GASP survey: Data analysis

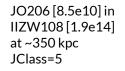
GAs Stripping Phenomena in galaxies with MUSE

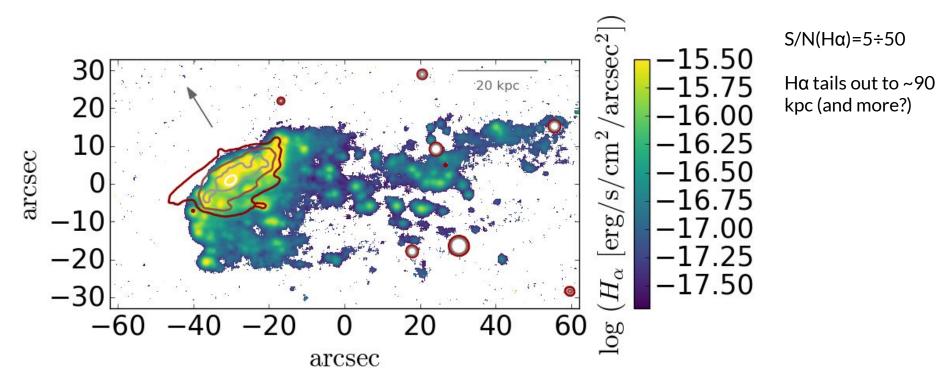
 \rightarrow Initial cube (CUBE1) corrected for galactic extinction (CUBE2) and spatially smoothed (5x5 pixels kernel, 0.7-1.3 kpc)

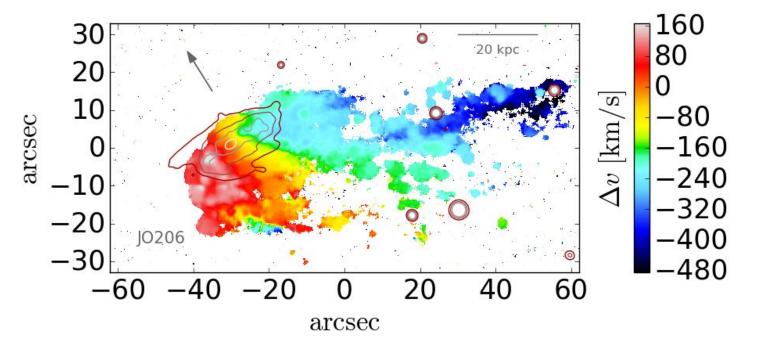

 \rightarrow Emission lines fitting on the original cube and on the emission only cube (CUBE3) [Kubeviz, Fossati et al., 2016]

- \rightarrow Gas and stellar kinematics maps [pPXF, Cappellari & Emsellem, 2004]
- \rightarrow Stellar population properties [SINOPSIS, Fritz et al., 2017]
- \rightarrow Dust extinction from Balmer decrement
- \rightarrow Metallicity [pyqz, Dopita et al., 2013] and BPT classification from line ratios
- \rightarrow SFR from H\alpha flux using Kennicutt (1998) relation
- \rightarrow M(ionized gas) from H α

Poggianti et al., 2017

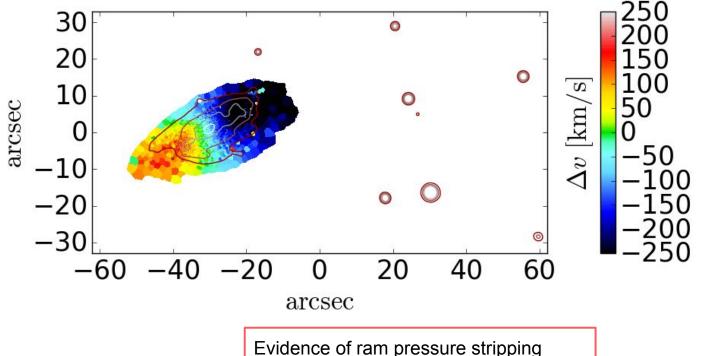

http://web.oapd.inaf.it/gasp/index.html


GAs Stripping Phenomena in galaxies with MUSE


http://web.oapd.inaf.it/gasp/index.html

The GASP survey: JO206, a JF prototype GAS Stripping Phenomena in galaxies with MUSE

GAs Stripping Phenomena in galaxies with MUSE


 $S/N(H\alpha)=5\div50$

H α tails out to ~90 kpc (and more?)

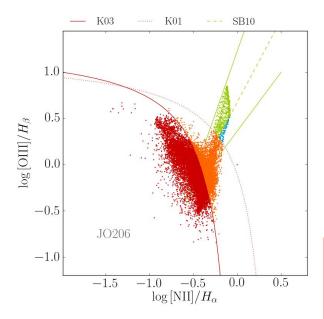
Stripped gas has coherent rotation

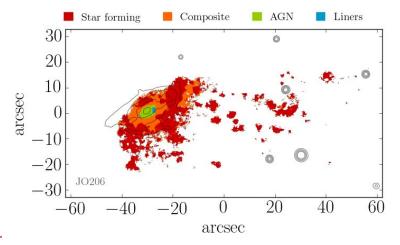
Velocity dispersion generally low (but in the center--AGN)

GAs Stripping Phenomena in galaxies with MUSE

 $S/N(H\alpha)=5\div50$

Hα tails out to ~90 kpc (and more?)


Stripped gas has coherent rotation


Velocity dispersion generally low (but in the center--AGN)

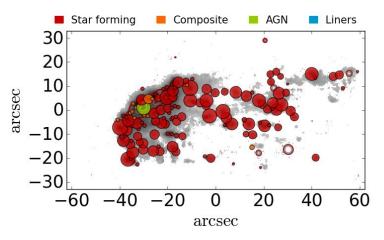
Regular stellar kinematics

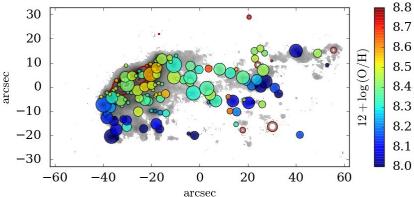
http://web.oapd.inaf.it/gasp/index.html

GAs Stripping Phenomena in galaxies with MUSE

Central AGN emission from BPT diagram(s)

Star forming disk


Origin of SF in the tails (from massive stars formed in the last 10^7 yr)


 \rightarrow new stars in situ (compatible with measured stellar continuum and stellar ages)

 \rightarrow ionizing radiation from stars in the disk

 \rightarrow stripping of ionized gas (recombination time too short, or implying gas traveling at ~9000 km/s)

GAs Stripping Phenomena in galaxies with MUSE

139 knots found on Ha image: 1 AGN dominated, remaining SF

Knots in the tails are giant HII regions (as in other JF - Fossati et al., 2016; Yagi et al., 2013; Cortese et al., 2004 etc) photoionized by stars [at odds with NGC4569 ionized by shocks, see Boselli et al., 2016]

Knots metallicity follows the resolved one

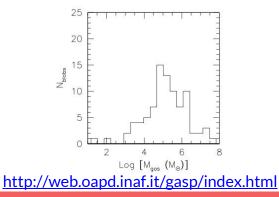
 $SF[AGN] = 1 M_{\odot}/yr$ $SF[Knots] = 4.2 M_{\odot}/yr$

40

30

20

10


-4

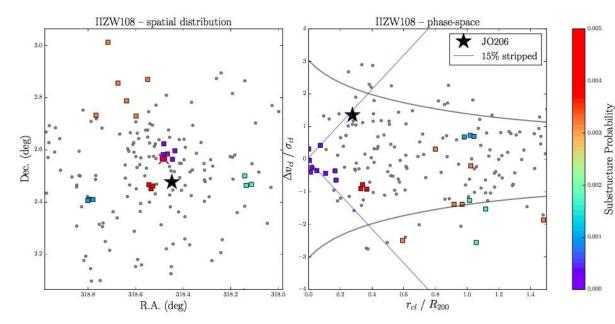
-2

Log SFR (M_/yr)

Nblobs

Total gas mass = $1.7e8 M_{\odot}$

The GASP survey: JO206, a JF prototype GAS Stripping Phenomena in galaxies with MUSE



Ongoing and recent SF in the tails

Older stars confined to the main galaxy body

SF in the stripped gas started during the last 5x10⁸ yrs

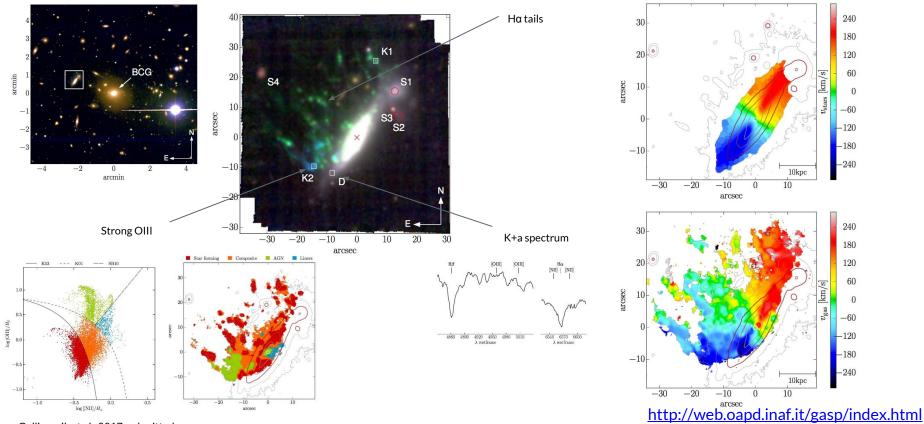
The GASP survey: JO206, a JF prototype GAs Stripping Phenomena in galaxies with MUSE

Cluster dynamics from WINGS/OmegaWINGS dataset (Moretti et al., 2017, Biviano et al., in preparation) on 171 spectroscopic members

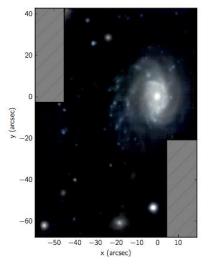
 $\rm M_{200}{=}\,1.9\,x\,10^{14}\,M_{\odot},\,R_{200}{=}\,1.17\,Mpc$

JO206 does not belong to any substructure

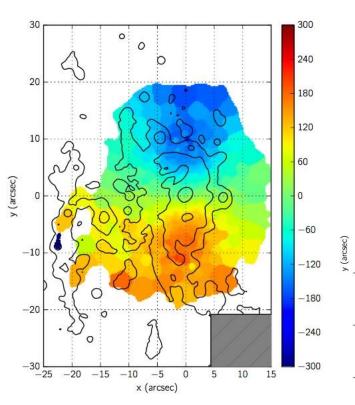
Located at 0.3 $R_{_{200}}$ with $\Delta v{\sim}1.5$ $\sigma_{_{cl}} {\rightarrow}$ ideal conditions for RPS

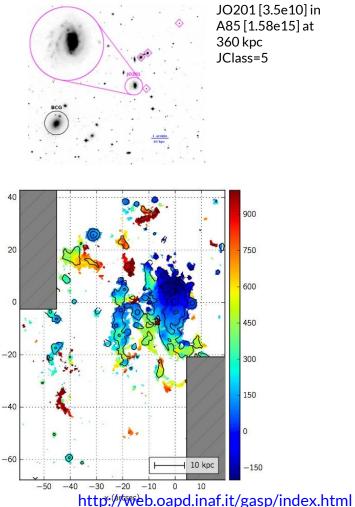

By comparing P_{ram} with the anchoring force of a disk galaxy as JO206 \rightarrow condition for stripping met at r~20 kpc

The estimated gas mass fraction lost to the ICM is ~15%

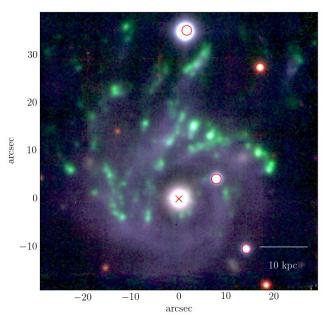

Caveat

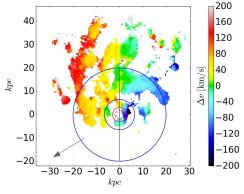
- \rightarrow Only projected measurements
- \rightarrow Idealized exp. Disk for JO206
- → Assumed homogeneous ICM
- \rightarrow H α used as gas tracer


JO204 [4e10] in A957 [4.4e14] at 132 kpc JClass=5

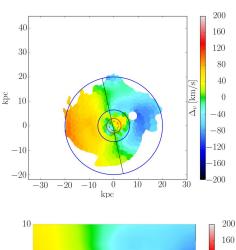


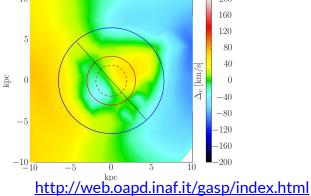
Gullieuszik et al., 2017, submitted




Is RPS causing unwinding arms? Need for two components fitting: stripping along the line of sight

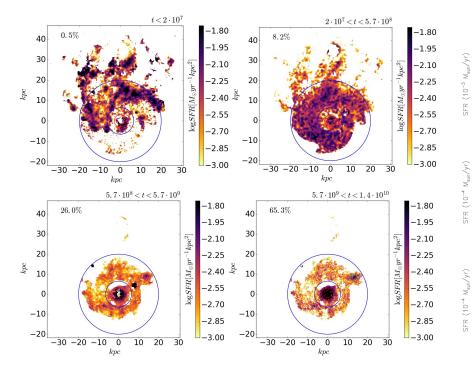
JO171 [3.4e10] in A3667 [1.7e15] at 1.38 Mpc JClass=5

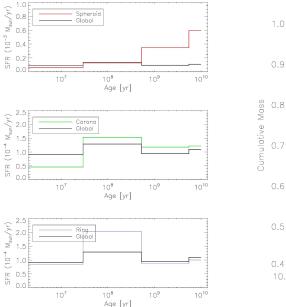


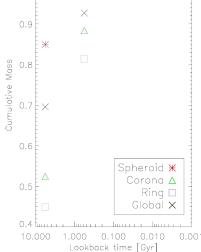


Gas only in the north region Stars uniformly distributed + Counter-rotation!

No merger remnant, no bar

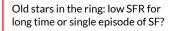

 \rightarrow gas accretion? merger?



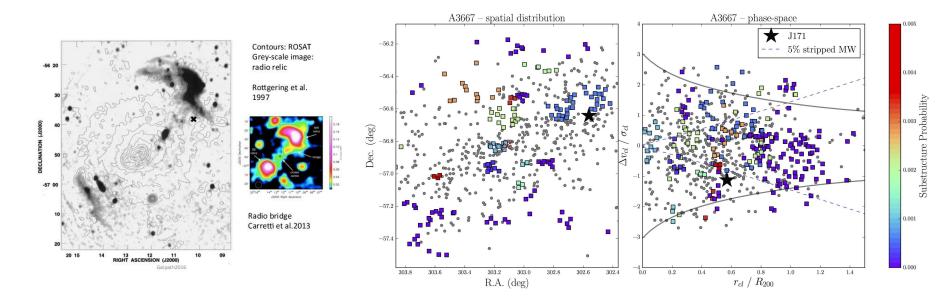

JO171 RGB image (I, $H\alpha$,B) resembling Hoag's galaxy: central spheroid+empty corona+gas ring (being stripped)

Moretti et al., 2017, submitted

SF history of different regions



Ж

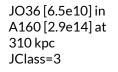


Ж

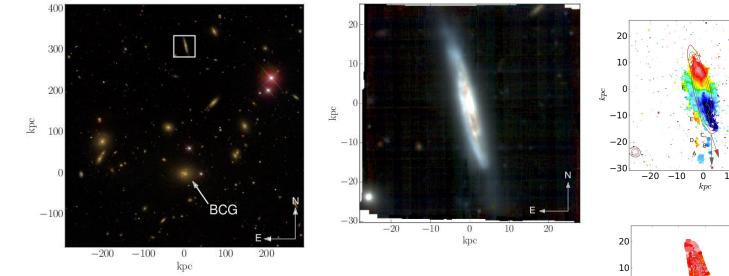
 \rightarrow ~90% of the total mass formed before the last 0.6 Gyr \rightarrow no young stars in the central spheroid

Moretti et al., 2017, submitted

In A3667, disturbed cluster (merging). Close to the radio bridge


Analysis of members (dedicated spectroscopy from OmegaWINGS+literature): JO171 might belong to a substructure (only marginal evidence) PPS location suggests recent accretion to the cluster + ram pressure stripping

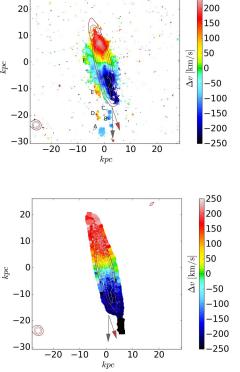
http://web.oapd.inaf.it/gasp/index.html


Moretti et al., 2017, submitted

JO171 possible scenarios

Internal origin	NO	Lack of bar
Collisional ring	NO	Counter-rotation
Major merger	NO	No young stars in the spheroid + round profile
Minor retrograde merger (1:2,1:5)	YES	~ 6 Gyr ago before entering into the cluster BUT no signatures of merger remnant
Cold Accretion	YES	Started early (old stars in the ring), confirmed by low metallicity

250



JO36 in A160: truncated H α disk, with probable buried AGN (from Chandra data) Gas kinematics is disturbed (see also H α blobs)

Stellar tail towards the BCG (due to gravitational interaction) Inside-out formation

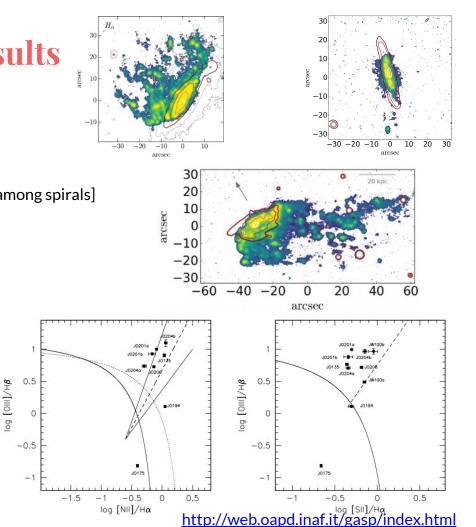
Herschel data predict a normal total gas mass (~ 10^{10}), while ionized gas is 7×10^{8} From PPS diagram 21% of gas mass stripped at ~13 kpc

Using also dust constraints \rightarrow ~20-30% of the total gas mass has been stripped via RPS

The GASP survey: General Results

GAs Stripping Phenomena in galaxies with MUSE

- Common phenomena: \rightarrow H α coincident with HII regions in the tails
- \rightarrow SF ongoing in the stripped tails [WIP ICL, WIP Fraction of JF among spirals]

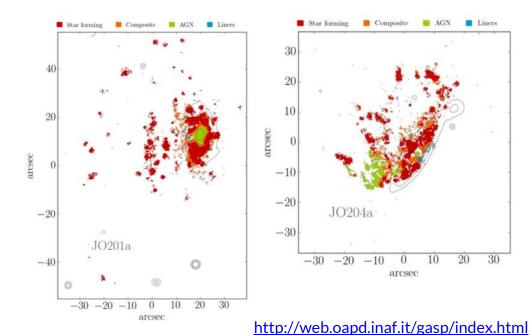

Success

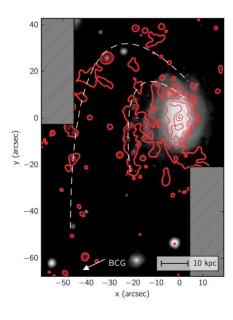
 \rightarrow MUSE data able to infer RPS and date it

Results

- \rightarrow RPS effective in low mass and high mass clusters, and For massive and less massive galaxies
- \rightarrow JF "degree" connected to AGN

GASP I: <u>arXiv:1704.05086</u> GASP II: <u>arXiv:1704.05087</u> GASP III: <u>arXiv:1704.05088</u>


The GASP survey: JF/AGN connection?


GAs Stripping Phenomena in galaxies with MUSE

 \rightarrow selecting (observed) JF with H α tails as long as the stellar disk diameter [masses between 4e10 and 3e11, estimated BH masses follows the relation between stellar masses and BH]

5/7 galaxies with emission line ratios typical of AGN (while only 3% of EL galaxies in WINGS clusters show AGNs) in the center and in an extended region of ~10 kpc. Chandra data confirm our results 1/7 LINER-like

1/7 with line ratios that can be explained in terms of star formation

The GASP survey: future observations

GAs Stripping Phenomena in galaxies with MUSE

 \rightarrow CO gas with APEX (33+44 hrs) for 5 galaxies to detect molecular hydrogen in the galaxies and in the tails: is the molecular gas stripped as well? How much molecular gas is present in the tails and left in the main body? [molecular gas is present both in the disk and in the tails, with different velocities, Moretti et al., in preparation]

 \rightarrow Deep HI observations of 15 JF in 5 clusters with JVLA (100 hrs, 15 kpc resolution)[mainly to study the interplay of the different gas phases, but also to correlate HI deficiency to the JF appearance and to discover interactions, if any.]

 \rightarrow Ultraviolet view of RPS in action with Astrosat (24.4 ks)

 \rightarrow Chandra observations [14 galaxies with masses >2e10 and JClass>=3, 40 ks each, 560 ks in total, 11 already show X-ray emission Nicastro et al., in preparation. To detect AGN signatures, shock fronts, ULXs]

 \rightarrow ALMA observations [4 targets, 20 hrs requested, all with AGN, in different clusters. 1 kpc resolution would allow to resolve the knots as in GASP. CO21 and CO10]