### Astrophysical inference and transient gravitational wave astronomy

**Greg Ashton** 





-----OzGrav-

#### Talk overview

- 1. Transient gravitational wave astronomy
- 2. The tools of inference
- 3. Better understanding individual events
- 4. Better understanding a population of events
- 5. Inference as a detection tool
- 6. Introducing Bilby: the "Bayesian Inference Library"

# Transient gravitational wave astronomy

#### Gravitational wave astronomy

- Gravitational wave astronomy has already enjoyed much success
- Three ground-based interferometers
- Working in tandem with multimessenger probes:
  - A multitude of telescopes spanning the electromagnetic spectrum
  - Neutrino detectors



LIGO-Virgo

#### Transient gravitational waves

- Caused by catastrophic events
- Primarily considering CBC or Compact Binary Coalescence
- Typically "observable" for a fractions of a second up to a few tens of seconds
- Extra galactic in origin



NSF/LIGO/Sonoma State University/A. Simonnet

#### The view so far

- After 2 observing runs
- 5 binary black hole mergers
- 1 binary neutron star merger:
  - Joint detection with Fermi-GBM/Integral
  - Subsequent detections across the spectrum
- 1 "LVT" (LIGO/Virgo trigger)



Credit: LIGO-Virgo/Frank Elavsky/Northwestern University

### The tools of inference

#### Getting physics out of the interferometer



Source: gwpy documentation

#### Getting physics out of the interferometer



TABLE I. Source parameters for GW150914. We report median values with 90% credible intervals that include statistical errors, and systematic errors from averaging the results of different waveform models. Masses are given in the source frame; to convert to the detector frame multiply by (1 + z) [90]. The source redshift assumes standard cosmology [91].

| Primary black hole mass   | $36^{+5}_{-4} M_{\odot}$                |
|---------------------------|-----------------------------------------|
| Secondary black hole mass | $29^{+4}_{-4} M_{\odot}$                |
| Final black hole mass     | $62^{+4}_{-4} {M}_{\odot}$              |
| Final black hole spin     | $0.67\substack{+0.05\\-0.07}$           |
| Luminosity distance       | 410 <sup>+160</sup> <sub>-180</sub> Mpc |
| Source redshift z         | $0.09\substack{+0.03\\-0.04}$           |

#### Abbott et al (2016), PRL 116

Hanford, Washington (H1)

#### From basic physics



- Use time-frequency plot and peak amplitude



Abbott et al (2016), PRL 116

Can obtain estimates such as

 $d_L \sim 300 \,{\rm Mpc}$ 

<sup>-</sup>requency

Not particularly accurate and difficult to estimate uncertainties

#### Bayesian inference

• Since we have uncertainties, we need to use probabilistic language

• Bayes rule: 
$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

- At its core, this is a statement of conditional probabilities
- But it provides tool set to:
  - Understand how well a given model fits the data
  - Compare between models



#### Simple example

- Model:  $g(x; A, f_0) = A \sin(f x)$
- Data: simulate with some fixed values
- Priors:
  - $A \sim \text{Uniform}(A_{\min}, A_{\max})$
  - $f_0 \sim \text{Uniform}(f_{0\min}, f_{0\max})$
- Output:
  - Posteriors (corner plots)
  - Posterior predictive plots
  - Evidence (compare to other models)



#### Inference for gravitational waves

- Fundamentally no different, but...
- Model of gravitational waveform
  - Typically has ~15 parameters
  - Phenomological waveform tuned to numerical relativity
  - Slow to evaluate (typically ~0.01 seconds/evaluation)
- Must also model the response of the detectors
  - E.g., frequency-dependent sensitivity
  - For long-lived signals this includes Doppler modulations

# Better understanding individual events

#### Inference for individual events

- GW170817 (the binary neutron star system)
- Masses clearly support that this is a pair of binary neutron stars
- Some wiggle room for a neutron star + black hole (but ruled out by other observations)



Abbott et al (2017) PRL 11916

#### Inference for individual events

- GW170817 (the binary neutron star system)
- EM follow-up enabled a hostgalaxy identification
- Giving an estimate of the distance
- Provides independent constraint on the Hubble constant



Abbott et al (2017) PRL 119

#### Joint inference between distinct data sets

- Given two data sets A and B both with "events" detected in them
- How do we decide if the events share a common origin?
- Generally, we look for common-parameters  $\theta$
- <u>Ashton et al. (2018) APJ 860</u>:



Example: sky-overlap



- Application to GW170817 and GRB 170817A favours a common signal by a factor of  $\sim 10^6$
- Agreement with the original analysis of <u>Abbott et al (2017) APJL 848</u><sup>19</sup>

# Better understanding a population of events

**Hierarchical modelling** 

#### Hierarchical models

#### Individual inference

- Given  $d_1, d_2, d_3 \dots, d_N$ independent data sets
- Infer model parameters:  $\theta$  for each data set : $P(\theta|d_i)$

#### Hyperparameter inference

- $\bullet$  Infer hyperparameters  $\Lambda$
- Hyperparameters model population-level effects
- Requires a predictive model



#### Hierarchical modelling: toy example

- Three data sets: a, b, and c
- For the *i*th individual data set:

$$y(x) = y_0 + m_i (x - x_0)$$

- Where  $y_0, x_0$  are populationparameters while  $m_i$  is not
- How can we infer  $x_0$  and  $y_0$ ?
- Note:  $x_0$  and  $y_0$  are degenerate



#### Individual posteriors

For an individual event, the gradient is well measured but  $x_0$  and  $y_0$  are not



Posterior for data A



Posterior for data B



#### Hyperparameter inference

• We can model the population behaviour as follows:

• Let:

- $x_0 \sim \operatorname{Normal}(\mu_{x_0}, \sigma_{x_0})$
- $y_0 \sim \operatorname{Normal}(\mu_{y_0}, \sigma_{y_0})$
- Then infer the posterior on the hyperparameters:  $\mu_{x_0}, \sigma_{x_0}, \mu_{y_0}, \sigma_{y_0}$
- Finally look at the predicted position for  $x_0, y_0$



## Applying hierarchical models to gravitational wave transients

- Use the observed events to determine population properties
  - E.g., <u>Talbot & Thrane (2017) PRD 96</u>
  - Determine formation channels and identify sub-populations
- Constrain formation rates and test cosmology
- Search for an astrophysical background of events
  - <u>Smith & Thrane (2018) PRX 8</u>
  - Time to detect the background reduced from 40 months (using traditional cross-correlation) to 1 day of design-sensitivity data

### Inference as a detection tool

#### Inference for detection

- Detection methods currently rely on frequentist method:
  - Define background distribution (time-slides)
  - Compute a p-value (probability of event or louder give background)
  - Small p-value  $\Rightarrow$  unlikely to be background
- This has some issues
  - Calculation of background is difficult/expensive
  - Saturation, e.g., <u>Was et al (2009) arXiv:0906.2120</u>
  - How to incorporate this in a Bayesian framework

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
  
Time-slides

 $p = \int_{\kappa^*}^{\infty} P(\kappa | N) \, d\kappa$ 



#### Hyperparameterised odds

• In a normal setting, we ask

"what is the evidence for a signal in the i<sup>th</sup> segment?"

• Amounts to calculating

$$O_{S_i/N_i}(d_i) = \frac{P(S_i | d_i)}{P(N_i | d_i)} = \frac{P(d_i | S_i) P(S_i)}{P(d_i | N_i) P(N_i)}$$

• Instead, we want to ask

"what is the evidence for a signal in the i<sup>th</sup> segment, given **all** the data?"

$$O_{S_i/N_i}(\boldsymbol{d}) = \frac{P(S_i | \boldsymbol{d})}{P(N_i | \boldsymbol{d})} = \frac{\int d\Lambda P(d_i | S_i, \Lambda) P(S_i | \Lambda) P(\Lambda | \boldsymbol{d}_{i \neq k})}{\int d\Lambda P(d_i | N_i, \Lambda) P(N_i | \Lambda) P(\Lambda | \boldsymbol{d}_{i \neq k})}$$

Ashton, Smith & Thrane (in prep.)



The User-friendly Bayesian inference library (the kode formerly known as tupak)

Greg Ashton, Moritz Hübner, Paul Lasky, <u>Colm Talbot</u>

Biscovenau, Easter, Goncharov, Lower, Payne, Powell, Sarin, Smith, Thrane

- General code for inference
- Capable of handling arbitrary data/models
- Multiple samplers
- gw-specific and hyperparameter modules
- www.monash.docs.ligo.org/bilby/

#### Overview

- Inference provides a universal tool for astrophysics
- Can help us understand individual events
- Hierarchical modelling can be used to
  - Understand populations
  - Detect backgrounds of events
  - Detect events
- Bilby: an OzGrav effort to build the next generation of inference tools



#### Posterior for hyperparameter example



#### Background and significance



33