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Talk overview

1. Transient gravitational wave astronomy
2. The tools of inference
3. Better understanding individual events
4. Better understanding a population of events
5. Inference as a detection tool
6. Introducing Bilby: the “Bayesian Inference Library”
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Transient gravitational wave 
astronomy
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Gravitational wave astronomy

• Gravitational wave astronomy has 
already enjoyed much success

• Three ground-based 
interferometers

• Working in tandem with multi-
messenger probes:

• A multitude of telescopes spanning 
the electromagnetic spectrum

• Neutrino detectors
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LIGO-Virgo

https://www.ligo.caltech.edu/image/ligo20171016e


Transient gravitational waves

• Caused by catastrophic events
• Primarily considering CBC or 

Compact Binary Coalescence
• Typically “observable” for a 

fractions of a second up to a few 
tens of seconds

• Extra galactic in origin
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NSF/LIGO/Sonoma State University/A. Simonnet

https://www.ligo.caltech.edu/image/ligo20171016d


The view so far

• After 2 observing runs
• 5 binary black hole mergers
• 1 binary neutron star merger:

• Joint detection with Fermi-
GBM/Integral

• Subsequent detections across 
the spectrum

• 1 “LVT” (LIGO/Virgo trigger)

6Credit: LIGO-Virgo/Frank Elavsky/Northwestern University

https://www.ligo.caltech.edu/image/ligo20171016a


The tools of inference
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Getting physics out of the interferometer
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Source: gwpy documentation

https://gwpy.github.io/docs/stable/examples/signal/gw150914.html


Getting physics out of the interferometer
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Abbott et al (2016), PRL 116

???

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102


From basic physics

• Abott et al (2016) Ann. Phys. 529
• Use time-frequency plot and peak

amplitude

• Can obtain estimates such as

𝑑𝑑𝐿𝐿 ∼ 300 Mpc
• Not particularly accurate and difficult to estimate uncertainties
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Abbott et al (2016), PRL 116

https://arxiv.org/ftp/arxiv/papers/1608/1608.01940.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102


Bayesian inference
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• Since we have uncertainties, we need to use probabilistic language

• Bayes rule: 𝑃𝑃 𝐴𝐴 𝐵𝐵) = 𝑃𝑃 𝐵𝐵 𝐴𝐴) 𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

• At its core, this is a statement of conditional probabilities

• But it provides tool set to:

• Understand how well a given model fits the data

• Compare between models
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Data
{𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}

Predictive 
Model: 𝑀𝑀𝑎𝑎
𝑦𝑦 = 𝑓𝑓 𝑥𝑥;𝜃𝜃

Inference

Posterior
𝑃𝑃 𝜃𝜃 data,𝑀𝑀𝑎𝑎)

Evidence
𝑃𝑃 𝑀𝑀𝑎𝑎 data)

Bayesian inference

Prior 
distributions
𝑃𝑃 𝜃𝜃 𝑀𝑀𝑎𝑎)

“What have we learnt 
about the relative 
probability of the 
model parameters?”

“What have we 
learnt about the 
relative probability 
of the model?”



Simple example

• Model: 𝑔𝑔 𝑥𝑥;𝐴𝐴, 𝑓𝑓0 = 𝐴𝐴 sin(𝑓𝑓 𝑥𝑥)
• Data: simulate with some fixed 

values
• Priors:

• 𝐴𝐴 ∼ Uniform(𝐴𝐴min,𝐴𝐴max)
• 𝑓𝑓0 ∼ Uniform 𝑓𝑓0min,𝑓𝑓0max

• Output:
• Posteriors (corner plots)
• Posterior predictive plots
• Evidence (compare to other models)
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Inference for gravitational waves

• Fundamentally no different, but…

• Model of gravitational waveform

• Typically has ∼15 parameters

• Phenomological waveform tuned to numerical relativity

• Slow to evaluate (typically ∼0.01 seconds/evaluation)

• Must also model the response of the detectors

• E.g., frequency-dependent sensitivity

• For long-lived signals this includes Doppler modulations
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Better understanding individual 
events

15



Inference for individual events

• GW170817 (the binary neutron 
star system)

• Masses clearly support that this 
is a pair of binary neutron stars

• Some wiggle room for a neutron 
star + black hole (but ruled out 
by other observations)

16Abbott et al (2017) PRL 119

https://arxiv.org/abs/1710.05832


Inference for individual events

• GW170817 (the binary 
neutron star system)

• EM follow-up enabled a host-
galaxy identification

• Giving an estimate of the 
distance

• Provides independent 
constraint on the Hubble 
constant
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Abbott et al (2017) PRL 119

https://arxiv.org/abs/1710.05832


Joint inference between distinct data sets

• Given two data sets A and B both with “events” detected in them
• How do we decide if the events share a common origin?
• Generally, we look for common-parameters 𝜃𝜃
• Ashton et al. (2018) APJ 860:

𝑃𝑃 A Common)
𝑃𝑃(A|Noise) ×

𝑃𝑃 B Common)
𝑃𝑃(B|Noise) × �

𝑃𝑃 𝜃𝜃 𝐴𝐴)𝑃𝑃 𝜃𝜃 𝐵𝐵)
𝑃𝑃 𝜃𝜃 𝑑𝑑𝜃𝜃 =

𝑃𝑃 A,B Common)
𝑃𝑃 A, B Noise)
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Evidence 
for event 

in 𝑑𝑑𝐴𝐴

Evidence 
for event 

in 𝑑𝑑𝐵𝐵

Posterior 
overlap
𝐼𝐼𝜃𝜃

Evidence 
for a 

common 
event

http://iopscience.iop.org/article/10.3847/1538-4357/aabfd2/meta


Example: sky-overlap

• Application to GW170817 and GRB 170817A favours a common signal 
by a factor of ∼ 106

• Agreement with the original analysis of Abbott et al (2017) APJL 848 19

https://arxiv.org/abs/1710.05834


Better understanding a 
population of events

Hierarchical modelling
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Hierarchical models

Individual inference
• Given 𝑑𝑑1,𝑑𝑑2,𝑑𝑑3 … ,𝑑𝑑𝑁𝑁

independent data sets
• Infer model parameters: 𝜃𝜃 for 

each data set :𝑃𝑃 𝜃𝜃 𝑑𝑑𝑖𝑖)

Hyperparameter inference
• Infer hyperparameters Λ
• Hyperparameters model 

population-level effects
• Requires a predictive model 21

Kalogera, Lazzarini (2017)

http://www.pnas.org/content/114/12/3017


Hierarchical modelling: toy example
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• Three data sets: a, b, and c

• For the 𝑖𝑖th individual data set:

𝑦𝑦 𝑥𝑥 = 𝑦𝑦0 + 𝑚𝑚𝑖𝑖 𝑥𝑥 − 𝑥𝑥0

• Where 𝑦𝑦0, 𝑥𝑥0 are population-
parameters while 𝑚𝑚𝑖𝑖 is not

• How can we infer 𝑥𝑥0 and 𝑦𝑦0 ?

• Note: 𝑥𝑥0 and 𝑦𝑦0 are degenerate



Individual posteriors
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For an individual event, the gradient is well measured but 𝑥𝑥0 and 𝑦𝑦0 are not

Posterior for data A Posterior for data B Posterior for data C



Hyperparameter inference

• We can model the population 
behaviour as follows:

• Let:
• 𝑥𝑥0 ∼ Normal 𝜇𝜇𝑥𝑥0 ,𝜎𝜎𝑥𝑥0
• 𝑦𝑦0 ∼ Normal 𝜇𝜇𝑦𝑦0 ,𝜎𝜎𝑦𝑦0

• Then infer the posterior on the 
hyperparameters: 𝜇𝜇𝑥𝑥0 ,𝜎𝜎𝑥𝑥0 , 𝜇𝜇𝑦𝑦0 ,𝜎𝜎𝑦𝑦0

• Finally look at the predicted position 
for 𝑥𝑥0,𝑦𝑦0
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Applying hierarchical models to gravitational 
wave transients
• Use the observed events to determine population properties

• E.g., Talbot & Thrane (2017) PRD 96
• Determine formation channels and identify sub-populations

• Constrain formation rates and test cosmology
• Search for an astrophysical background of events

• Smith & Thrane (2018) PRX 8
• Time to detect the background reduced from 40 months (using traditional 

cross-correlation) to 1 day of design-sensitivity data
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.023012
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021019


Inference as a detection tool
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Inference for detection
• Detection methods currently rely on frequentist 

method:
• Define background distribution (time-slides)
• Compute a p-value (probability of event or louder given 

background)
• Small p-value ⇒ unlikely to be background

• This has some issues
• Calculation of background is difficult/expensive
• Saturation, e.g., Was et al (2009) arXiv:0906.2120
• How to incorporate this in a Bayesian framework

𝑃𝑃 𝐴𝐴 𝐵𝐵 =
𝑃𝑃 𝐵𝐵 𝐴𝐴 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
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𝑝𝑝 = �
𝜅𝜅∗

∞
𝑃𝑃 𝜅𝜅 𝑁𝑁) 𝑑𝑑𝜅𝜅

Time-slides

https://arxiv.org/abs/0906.2120


Hyperparameterised odds

• In a normal setting, we ask
“what is the evidence for a signal in the ith segment?”

• Amounts to calculating

𝑂𝑂𝑆𝑆𝑖𝑖/𝑁𝑁𝑖𝑖 𝑑𝑑𝑖𝑖 =
𝑃𝑃 𝑆𝑆𝑖𝑖 𝑑𝑑𝑖𝑖)
𝑃𝑃 𝑁𝑁𝑖𝑖 𝑑𝑑𝑖𝑖)

=
𝑃𝑃 𝑑𝑑𝑖𝑖 𝑆𝑆𝑖𝑖)𝑃𝑃(𝑆𝑆𝑖𝑖)
𝑃𝑃 𝑑𝑑𝑖𝑖 𝑁𝑁𝑖𝑖)𝑃𝑃(𝑁𝑁𝑖𝑖)

• Instead, we want to ask
“what is the evidence for a signal in the ith segment, given all the data?”

𝑂𝑂𝑆𝑆𝑖𝑖/𝑁𝑁𝑖𝑖 𝒅𝒅 =
𝑃𝑃 𝑆𝑆𝑖𝑖 𝒅𝒅)
𝑃𝑃 𝑁𝑁𝑖𝑖 𝒅𝒅)

=
∫𝑑𝑑Λ𝑃𝑃 𝑑𝑑𝑖𝑖 𝑆𝑆𝑖𝑖 ,Λ)𝑃𝑃 𝑆𝑆𝑖𝑖 Λ) 𝑃𝑃(Λ|𝒅𝒅𝑖𝑖≠𝑘𝑘)
∫𝑑𝑑Λ𝑃𝑃 𝑑𝑑𝑖𝑖 𝑁𝑁𝑖𝑖 ,Λ)𝑃𝑃 𝑁𝑁𝑖𝑖 Λ) 𝑃𝑃(Λ|𝒅𝒅𝑖𝑖≠𝑘𝑘)

Ashton, Smith & Thrane (in prep.)
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The User-friendly Bayesian inference library
(the kode formerly known as tupak)

Greg Ashton, Moritz Hübner, Paul Lasky, Colm Talbot
Biscovenau, Easter, Goncharov, Lower, Payne, Powell, Sarin, Smith, Thrane

• General code for inference
• Capable of handling arbitrary 

data/models
• Multiple samplers
• gw-specific and hyperparameter

modules
• www.monash.docs.ligo.org/bilby/

http://www.monash.docs.ligo.org/tupak/


Overview

• Inference provides a universal tool for astrophysics
• Can help us understand individual events
• Hierarchical modelling can be used to

• Understand populations
• Detect backgrounds of events
• Detect events

• Bilby: an OzGrav effort to build the next generation of inference tools
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Credit: LIGO-Virgo
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https://www.ligo.org/scientists/GWEMalerts.php


Posterior for hyperparameter example
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Background and significance
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