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The Dawn of Gravitational-wave Astronomy

LIGO Hanford Observatory: GW150914 LIGO Livingston Observatory: GW150914
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GW150914 at Hanford & Livingston Observatories
(plot credit: N. Cornish, J. Kanner, T. Littenberg, M. Millhouse;
LVC, Phys Rev Lett 116 (2016) 061102)
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The Dawn of Gravitational-Wave Astronomy

Panorama at LIGO Hanford Observatory (credit: G.D. Meadors)
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Opening the spectrum

The Gravitational Wave Spectrum

Quantum fluctuations in early universe
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Space for new observatories (credit: NASA Goddard Space Flight Center) 4,41



Introduction to Gravitational Waves

General relativity (GR): extremize curvature R,
when cosmological constant N, matter Ly, metric g:

0_5/< (R —2A) +£M>\/¥d4

5/41



Introduction to Gravitational Waves

General relativity (GR): extremize curvature R,
when cosmological constant N, matter Ly, metric g:

0_5/< (R —2N) +LM>\/EC/4

GR's contribution: Einstein-Hilbert action S,

x / R/ —|gld*x,

GR says, ‘minimize/maximize Ricci curvature R’ 1
(as much as matter allows)

!Maybe someday this will turn out to be f(R)?
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Introduction to Gravitational Waves

General relativity (GR): extremize curvature R,
when cosmological constant A\, matter Ly, metric g:

0_5/( (R —2A) +£M>\/Fd4

gives the Einstein field equations? for stress-energy tensor T:

1
R — §gW(R +2A) =81 Ty,

>where R and Ry, depend on g,
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Introduction to Gravitational Waves

General relativity (GR): extremize curvature R,
when cosmological constant A\, matter Ly, metric g:

0_5/< (R —2A) +£M)md4

— wave equation in transverse-traceless gauge if g, ~ 7, + hu,
for flat space n and a small wave h:

(—0? +02)h = 167 Ty,
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All conceivable wave polarizations

Phase (rad)
Polarization 0 /2 8 3mn/2 2n
(axes)
L, @
L, ®
L ©
L, @
L, (@
L,

GR allows (a) and (b)
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Introduction to Gravitational Waves

Wave equation is sourced by T:
@ Conservation of mass-energy — no monopole radiation
o Conservation of momentum — no dipole (unlike light)
@ Quadrupoles (& higher) needed: massive astrophysical bodies

Direction wave-vector k,,
2 polarizations (hy & hy) of strain h:
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Space ‘stretches’ length L by AL in one direction, then another:
AL = hL — measure AL
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Gravitational-wave Observatories

~3,
;LIGO Hanford

.LIGO Livingston

Operational pr-
Under Construction
Planned

Global map out-of-date: Virgo now fully-operational,
LIGO India under construction (image credit: LIGO EPO)
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Gravitational-wave Observatories

LIGO location and configuration (credit: S. Larson, Northwestern U) 12,41



Gravitational-wave Observatories

Overhead, toward X-arm (credit: C. Gray, LIGO Hanford)




Gravitational-wave Data Analysis

‘ transient events long-lasting

predicted form CBCs? Cws*
unknown form bursts stochastic

CBCs ‘Inspirals’ of merging neutron stars & black holes
CWs ‘Pulsars’ with mountains on neutron (quark?) crust
Bursts from supernovae, hypernovae (GRBs)...

Stochastic background of the Big Bang, white dwarf stars...

3Compact Binary Coalescences
*Continuous Waves
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GW150914: an archetypical compact binary coalescence
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Numerical relativity (NR) & template (‘Observation of gravitational waves
from a binary black-hole merger’, LVC, Phys Rev Lett 116 (2016) 061102)
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What does the template reveal?

Inference
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What does the template reveal?

Inference

Inference: learning about the model from the data
(By estimating parameters)
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Inference, concrete example: GW150914 localization
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Astronomical landmarks at time of event (probability deciles)
(credit: R. Williams, Caltech; T. Boch, CDS Strasbourg;
S. Larson, Northwestern U)
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Inference, abstract example: GW150914 and stellar winds
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Figure 1, 'Astrophysical implications of the binary black-hole merger
GW150914" (LVC, ApJL 818 (2016) L22), after Belcynzski et al 2010.
Black-hole progenitor masses favor weak metallicity-wind models
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Intro to Bayesian inference

Bayes’ theorem is natural for inference
What is the ‘posterior’ probability of A, given B? P(A|B) is,

Pae) = PO,

Ask, what's probability of a parameter A given GW strain h(t)?

P(h(t)[\)P()
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Intro to Bayesian inference

In the equation,

P(AA(1)) = )'(A)”

P(h(
P(h(t))
e P(h(t)|N) is the likelihood:
many people use likelihoods
(can be numerically-hard, depends on noise distribution)
e P()) is the prior:
the philosophical difference!
e P(h(t)) is the probability of the data (a normalization):

usually hard to estimate
get around by comparing %
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Intro to Bayesian inference

Example

) could be a vector X
A1 = to, ‘'when did the black holes coalesce?’ or,
A2 = 6, ‘at what declination did they come from?’

22/41



More advanced Bayesian inference: prior
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Figure 1, ‘Parameter estimation for compact binaries..." (Veitch et al, PRD
91 (2015) 042003). Example prior on A: black hole masses my, m, and

mass ratio g & chirp mass M
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More advanced Bayesian inference: posterior
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Figure 9, ‘Parameter estimation for compact binaries..." (Veitch et al, PRD
91 (2015) 042003). Example posterior (three computational methods:
BAMBI/Nest/MCMC) on right ascension « and declination 4.
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More advanced Bayesian inference: hypotheses
A special ‘parameter’: a hypothesis H,

P(h(t)|X, H)P(A|H)
P(h(t)[H)
The Bayesian evidence Z for H: integrate! (good sampling is hard)

P(X|h(t), H) =

Z = p(h(e)1H) = [ dRP(H(O)IX. H)p(AIH)

Between two hypothesis, Bayes Factor Bj; tells
how much data supports i over j:

Z
with final Odds O;;
(ratio of posterior probabilities),
P(H;)
O; = B;:
T P(H)
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Understanding merging binaries

Compact binary coalescence (CBC):
neutron stars

(GW170817)

black holes

(GW150914, LVT151012, GW151226, GW170104, GW170608,
GW170814,...)

black hole coalescences: theoretically simple, numerically hairy
Model | Numerical Relativity (NR) o< General Relativity (GR):

[h(t)]measured = calibration(photodiode(interferometer(t))),
[h( t)] modelled = approximant(NR(GR( t) ) )

= What is the strain h(t)?°

Simplicit: what is h(t, \)
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Parameters A of a CBC determine h(t)
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Figure 1, ‘Fast and Accurate Inference...”" (Smith et al, PRD 94 (2016)
044031). Illustration of CBC parameters in a J-aligned source frame, with

precession.
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Parameter estimation for compact binary coalescences

(for the simplest, non-eccentric binary black hole (BBH) case)
Strain h(t) depends on 15 binary parameters A

o +2:
o +6:
o +3:
o +1:
o +2:
o +1:

masses {mz, my},

3-D spin-vectors {S1,S2},

sky location of frame in BBH frame (r, ¢, ),
coalescence time t.,

sky location of BBH in detector frame (6, ¢),

polarization angle 9,

@ > = 15 parameters to estimate

GR non-linear — simulate BBH with NR
Too high-dimensional to simulate all with NR — approximants
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Numerical relativity's approximant waveforms

LALInference (Veitch et al 2015)
— Bayesian evidence for parameter estimation w/. ..
families of approximants to NR

SEOBNR

(Spinning Effective One Body-Numerical Relativity)
IMRPhenom

(Inspiral-Merger-Ringdown Phenomenological Model)
(and others)

— many motivations, known to differ: what is best?
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Inferring evidence for approximants in data

Differences in NR (Williamson et al 2017; Pang et al 2018)
= What about data?
Two phases of questions |l

© What is the typical difference?
@ Where is it biggest in parameter space?
© Which fits better?

@ How much data is needed distinguish these approximants?
e.g., how many events?

@ Can data tune better approximant models?
@ " tune NR?

ICONCERNS: spin effects (not) included, higher-order modes, etc. ..
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How model-comparison uses Bayes Factors

Universe C

n(B)

Figure 1, '‘Determining the population properties..." (Tablot & Thrane,
PRD 96 (2017) 023012). Using Bayes Factors B to distinguish popula-
tion models: individual event evidence small, but cumulative grows, allows

model comparison
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Introduction to spin-precession

So far, talked about SEOBNR vs IMRPhenom
— Hone in on the difference between IMRPhenomD & IMRPhenomP:

Mass ratio (above unity) : ¢ = my/my, (1)
Total mass : M = my + my (2)

Effective spin parameters

Xeft = (S1/m1 + Sa/my) - L/M (3)
__aycosf + gazcosth
1+gq
) 49 + 3 )
Xp = max (al sin 61, (41 3q> gas sin 92> ) (4)
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Can we measure precession?

Simulations (no real data)

Ask the question:
What is the total Bayes Factor difference
between models with & without precession?
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Histogram of log Bayes Factors D (top) & Pv2 (bottom)
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log Bayes Factor (Pv2 - D) vs log Bayes Factor (P)
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Histogram of log Bayes Factor (Pv2 - D)

Histogram of log Bayes Factors in ratioPtoD
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Measurability

Suppose detection = threshold
total log Bayes Factor difference between D and Pv2 > 87
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25 non-independent Shuffles to Reach log BF = 8

Cumulative difference of log Bayes Factors
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Histogram: 103 non-independent Shuffles to Threshold

Histogram of how many injections to reach threshold Bayes Factor
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Pre-Conclusion

Plan:

© As few as one event, but typically O(8) assuming ay.x = 0.89
where a is black hole spin

@ If apmax lower, probably harder
© Hyper-parametrize as in model at RIT

@ Discern which events best indicate precession

Why care?

Precession = GR test + astro (capture/common)
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Conclusion

Gravitational-wave astronomy is beginning

Bayesian Inference tests hypotheses on this new data

Growing evidence w/ more events — and new types of observatories
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IMRPhenomD log Bayes Factor vs x,

difference in log Bayes Factor vs chi_p: bEvs-chip
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IMRPhenom: Pv2 - D, log Bayes Factors, vs x,

difference in log Bayes Factor vs chi_p: dif-bEvs-chi-p
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