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Waveforms contain all gravitational information
At least for black holes, that might be all there is to know



Astrophysical Sources of Gravitational Waves



Compact Binary Coalescence

NS-NS, NS-BH, BH-BH

Modeled well with waveforms
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Compact Binary Coalescence             SGRB 

Supernova                   ?                             LGRB

(NSNS, NSBH)

http://ligo.org/science/Publication-GWHEN-IceCube/index.php



Joint BNS & sGRB Rates*

*Assuming that all sGRBs are the products of BNS

Clark et al. 2014





EM signature evolution post-merger

• Compact binary merger: forms 
compact object and accretion disk

• Accretion disk feeds pair of jets

• Interaction of jet with surrounding 
medium: nonthermal afterglow

• Once jet decelerates, afterglow is 
isotropic

Singer et al ApJ 795 105 2014



Not spherical emission but along relativistic jets



Source: heasarc.gsfc.nasa.gov



●Time delay (+uncertainty) between 2 detectors: annulus

●Time delay between 3 detectors: annuli intersect in (S,S')

True source direction

Mirror image ApJL 826:L13, 2016



• 90% error region ~28 deg2

• 10,000+ sources in field, 
ideally only 1 transient 

• Not typical size historically



~ 28 deg2

~ 600 deg2

~ 850 deg2

~ 1200 deg2

~ 60 (1160) deg2  with(out) V





• >40 people involved
• 9 institutions (UK, Australia, Thailand, 

Spain, Finland)
• Co-PIs Danny Steeghs (Warwick) and 

Duncan Galloway (Monash)
• Funded through Warwick-Monash Alliance 

and institution contributions

GOTO Science Meeting, Warwick, April 2018

GOTO Collaboration



• Dedicated to rapidly detecting optical counterparts to GW events
• Quick-slewing robotic mount with multiple independent 40cm f/2.5 unit telescopes
• Final design: 8 UTs ~ 40 sq. deg
• First light on 11 June 2017



• Autonomous, custom robotic control 
system for hardware, nightly operations

• Generate ~40GB data/night  (~140 GB 
/night at full design)

• Transfers from La Palma to Warwick (UK) 
for real-time processing, then to Monash 
for backup storage and testing

• Warwick: 8 CPUs for parallel processing of 
each camera

• Turn around time ~minutes

• All detected sources stored in 
PostgreSQL database



• FLI MicroLine cameras
• Each UT: 8176 x 6132 pix
• Pixel scale ~1.2”/pix
• Limiting magnitude 

~20-21 with 2min exposure
• Baader LRGBC filters

GOTO Specs



GOTO Status
• Currently in commissioning 
• 3 out of 4 cameras observing: 

waiting for the 4th camera to be returned
• Shift weights to mimic 4th camera for observing



GOTO Status
• Currently observing in “survey mode”
• Search ongoing for transients/variables 

in ”discovery mode”
• Following GCNs, Atels

• Pipeline running in real time
• Database running in real time (both 

discovery and scheduling)

• Finalise commissioning, pipeline 
readiness, and database for O3

• Combine all potential ML pipelines for 
transient discovery: both supervised 
and unsupervised



• Each hardware type has a control daemon
• pilot is master control program
• Targets are entered into database and 

schedules as ‘just-in-time’
No fixed night plan – reevaluates every 10s

• Checks altitude, moon distance, … à
Finds and sorts by priority

GOTO Automated Scheduler

Developed by M.J. Dyer



• Divides the sky into fixed grid of 
overlapping tiles

• Most nights: all-sky survey over 
tiles

• GW skymaps are mapped onto 
grid, each tile containing a 
fraction of the probability

• When a tile is observed we use 
previous observations for 
difference imaging

GOTO-tile GW151226 4-
UT configuration

GOTO Automated Tiling + Reference



First GCN on 06 Dec 17



Many more since then



Week 1 of Feb 2018





Large, crowded fields



GW detector 
data

GW analysis 
pipelines Triggers Parameter 

Estimation

Telescope 
Images

Transient ID 
Pipeline

EM 
counterpart 
candidates

Joint 
Detection!



Rau et al. 2009
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Observation Reference Subtracted

𝑅 ∗ 𝐾O

• Quality of subtracted image is affected by:
• Precision of reference frame transformation
• Imaging noise

Find Kernel K such that  ∑( 𝑅 ∗ 𝐾 − 𝑂))�
� is minimized 

With machine-learning techniques, can reduce the set of 10,000+ to only a handful

• Atmospheric disturbances
• Saturated pixels



Artifact Overload

HOTPANTS; Becker 2015
ascl:1504.004



Projection

Shapelet Index
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Zernike Decomposition of Sources

• Used in astronomy for wavefront analysis, 
characterizing atmospheric turbulence, 
correction for adaptive optics



Selection Criterion
• Ensemble average and characteristic 

spread for coefficients of each order

• Leads to definition of Zernike Distance

Decomposition

For each order

𝐷J = 1
𝑐L − 𝑐LM

)

σL)

LOPQ

L9R
criterion for point-likeness



• Inject thousands of transients into variety of images
• Scaled model PSF (point-spread-function) 
• Subject to shot noise

• Vary image quality
• Increase background noise
• Additional blurring with Gaussian kernel

• Cross-reference transients with injection catalog

• Determine cut-off criterion for Z-Distance depending on
• Telescope
• Viewing conditions
• Galactic latitude



m = 18 m = 19 m = 20 m = 21 m = 22
m = 23



• No injections

• Use image as its own reference:
• But add background and blurring
• Avoid ‘true’ false positives (actual transients)

• ‘Perfect’ reference image:
• Study shows limitation of pipeline algorithm itself



Number of objects in images: 88,886,994
Number of objects after image subtraction: 1,756,248



Number of objects in images: 88,886,994
Number of objects after image subtraction: 1,756,248
Total objects DZ <= 15: 366 ------------>  0.545 / deg2

Total objects DZ <= 10: 9 ------------>   0.013 / deg2



Receiver Operating Characteristic

AUC = 0.98

Survey TPR (%) FPR (%)

PTF 92.3 1

Pan-STARRS 90 1

DES-SN 88 1

Nearby SNFactory 95 1

This work 92 1



Singer et al ApJ 795 105 2014



d=H0/v

Traditionally: use cosmic ``distance ladder” for finding v
• Can use Tully-Fisher (Luminosity/mass vs. angular velocity) 

or Type Ia Supernovae
• Compare against distant samples (``stable” Hubble flow)



d=H0/v
v = vH + vp

Hubble Flow
constant
Measure from group c.o.m.

Peculiar velocity
Local grav. Field 

(6dF)



H0 = 70.0 +12.0 
−8.0 km s−1 Mpc−1



H0 = 70.0 +12.0 
−8.0 km s−1 Mpc−1

Even without EM counterpart: 
∼ 100 independent GW detections*  ∼ 5% estimate of H0

*Each detection has potential host galaxy




