The Geometry and Kinematics of Circumgalactic Gas

Nikki Nielsen Swinburne University of Technology

SWINBURNE UNIVERSITY OF TECHNOLOGY

Collaborators: Glenn Kacprzak, Chris Churchill, Michael Murphy, Sowgat Muzahid & Jane Charlton

Geometry and Kinematics of the CGM

Galaxy Evolution and the Baryon Cycle

The Circumgalactic Medium (CGM) + Quasar Absorption Line Technique

Geometry + Kinematics of the Isolated Galaxy CGM: Low Ionization CGM High Ionization CGM

Galaxy Environment

Galaxy Evolution: Color-Magnitude Diagram

Schawinski+ 2014

Gas Regulation - The Baryon Cycle

Gas Regulation - Circumgalactic Medium

Circumgalactic Medium (CGM)

CGM important laboratory for probing the baryon cycle of galaxies

Multiphase, diffuse gas

Test cold-mode accretion (e.g., Birnboim work)

Feedback in simulations - different feedback prescriptions result in different CGM properties

Baryon budget - solution to missing baryons problem? ~60% missing ->CGM more massive than previously thought

Metallicity bimodality

Circumgalactic Medium (CGM)

CGM important laboratory for probing the baryon cycle of galaxies

CGM in Simulations

z=2.8, Eris2 simulation black circle = R_{vir}

Low Ionization CGM

High Ionization CGM

Quasar Absorption Line Technique

Quasar sightline is a pencil beam

Typically only 1 quasar sightline per galaxy

Collect many galaxies with 1 sightline!

Other methods: Background galaxy, host galaxy, GRBs, stars (MW only)

MgII Doublet Absorption

MgII Doublet Absorption

Extensive work with MgII quasar absorption lines spanning ~3 decades e.g., Bergeron 1986, Bergeron & Boisse 1991, Steidel+ 1994, Lanzetta+ 1995, Churchill+ 2005, Chen+ 2010, Kacprzak+ 2011, and many more!

Observable in the optical over redshift range: 0.1 < z < 2.5 (~10 Gyr difference!)

Temperature: 10^{4.5} K photoionized gas ("cool" gas in CGM work)

HI column densities: 16 < log *N*(HI) < 22

Q1206+459 z_{abs}=0.927

MgII Doublet Absorption

Attributed to:

Accretion along dark matter filaments, add angular momentum e.g., Rubin+ 2012, Martin+ 2012

Outflows from SN feedback & stellar winds; bipolar e.g., Bouche+ 2012, Bordoloi+ 2014, Rubin+ 2014

Recycled Accretion as a galactic fountain

e.g., Ford+ 2014 (simulations)

Merging satellite galaxies e.g., Martin+ 2012

Low Ionization CGM - MgII

Impact Parameter (kpc)

- MgII Absorber--Galaxy Catalog -> MAGIICAT
- 182 isolated galaxies120 with measured absorption62 with upper limits on absorption

D < 200 kpc

z_{gal} = 0.1-1.1

HIRES/Keck or UVES/VLT quasar spectra for ~70 absorber--galaxy pairs

HST images for ~60 galaxies

Nielsen+ 2013a,b, 2015, 2016; Churchill+ 2013a,b; Kacprzak+ 2012

Self-Similar CGM

Halo abundance matching with Bolshoi simulations (Klypin+ 2011, Trujillo-Gomez+ 2011)

$$10.7 < \log (M_h/M_{sun}) < 13.9$$

Majority between 11 < log (M_h/M_{sun}) < 13

More massive galaxies have a larger CGM

Absorption mostly within 0.5 R_{vir}

Churchill+ 2013a,b (MAGIICAT III)

Geometry and Kinematics of the CGM

Galaxy Evolution and the Baryon Cycle

The Circumgalactic Medium (CGM) + Quasar Absorption Line Technique

Geometry + Kinematics of the Isolated Galaxy CGM: Low Ionization CGM High Ionization CGM

Galaxy Environment

outflows, Large EWs

Rotation

Equivalent Width -> Kinematics

Absorption Kinematics

0 km/s = z_{abs} = optical depth-weighted median of absorption

MAGIICAT: Nielsen+ 2013a,b, 2015, 2016; Churchill+ 2013a,b; Kacprzak+ 2012

Absorption Kinematics: Pixel-Velocity TPCF

(Two-Point Correlation Function)

Full Sample Pixel-Velocity TPCF

Full Sample Pixel-Velocity TPCF

Previous works fit Gaussians to TPCF. Attributed to:

Motions within galaxy and between galaxy pairs (Petitjean & Bergeron 1990)

Vertical dispersion in galaxy disks and rotational motion (Churchill+ 2003)

Different Gaussians due to different galaxy evolutionary processes?

Galaxy Orientation Subsamples

Galaxies modeled with GIM2D in HST images

Color & Azimuthal Angle

Velocity spreads larger along **Minor Axis** for **Blue galaxies** -> outflows?

No difference in the TPCFs for **Red** galaxies with **Major** and **Minor axes** -> gas just rotating around galaxy?

 $<\!B-K\!> = 1.4$

Color & Inclination

Velocity spreads greatest for Face-on, Blue galaxies -> outflows?

Velocity spreads for Edge-on same for Blue and Red -> rotating gas?

Geometry and Kinematics of the CGM

Galaxy Evolution and the Baryon Cycle

The Circumgalactic Medium (CGM) + Quasar Absorption Line Technique

Geometry + Kinematics of the Isolated Galaxy CGM: Low Ionization CGM

High Ionization CGM

Galaxy Environment

High Ionization CGM

OVI doublet absorption: $\lambda\lambda$ 1031, 1037 Å

Most extensively studied by COS-Halos team Tumlinson+ 2011, 2013; Werk+ 2012, 2013, 2014, 2016 Others: Tripp+ 2000; Prochaska+ 2011; Mathes+ 2014; Muzahid+ 2012 ...

Observable in the UV at z<0.7 by Cosmic Origins Spectrograph on HST

Temperature: ranges from $T=10^{4.8}$ K (photoionized) to $T=10^{5.5}$ K (collisionally ionized)

Density: $n_{\rm H} \sim 10^{-4} \,\mathrm{g \, cm^{-3}}$

Kacprzak+ 2015, ApJ, 815, 22

Absorption Kinematics

0 km/s = z_{abs} = optical depth-weighted median of absorption

MAGIICAT: Nielsen+ 2013a,b, 2015, 2016; Churchill+ 2013 Multiphase Galaxy Halos: Kacprzak+ 2015; Muzahid+ 2015; Nielsen+ 2017

Full Sample Pixel-Velocity TPCFs

Galaxy Orientation Subsamples

 $<i>=51^{\circ}$ for OVI

Galaxy Color Cuts	MgII	Ονι
Blue Galaxies	B-K < 1.4	B-K < 1.66
Red Galaxies	B-K≥1.4	<i>B−K</i> ≥ 1.66

Galaxies modeled with GIM2D in HST images

Nielsen+ 2015, ApJ, 812, 83 (MAGIICAT V) Nielsen+ 2017, ApJ, 834, 148

Ονι

Color & Azimuthal Angle

No differences in the OVI TPCFs between subsamples

Kinematics are the same regardless of galaxy azimuthal angle and color subsample combinations

<*B*-*K*> = 1.66

Nielsen+ 2017, ApJ, 834, 148

Ονι

Color & Inclination

No differences in the OVI TPCFs between subsamples

Kinematics are the same regardless of galaxy inclination and color subsample combinations

Nielsen+ 2017, ApJ, 834, 148

Nielsen+ 2017, ApJ, 834, 148

Geometry and Kinematics of the CGM

Galaxy Evolution and the Baryon Cycle

The Circumgalactic Medium (CGM) + Quasar Absorption Line Technique

Geometry + Kinematics of the Isolated Galaxy CGM: Low Ionization CGM High Ionization CGM

Galaxy Environment

-100 -75 -50 -25 0 Projected Distance Assuming z_{abs} = 0.31271 (kpc)

New: Galaxy Environment

Kacprzak+ 2010

New: Galaxy Environment

Nielsen+ in prep

New: Galaxy Environment

Pointon, Nielsen+ ApJ, submitted

 $\Delta v_{\rm pixel} \ ({\rm km \ s^{-1}})$

Pointon, Nielsen+ ApJ, submitted

Summary

Low Ionization CGM (MgII)

Presence of gas is azimuthal angle dependent: prefers **major** and **minor** axes

Largest absorber velocity dispersions for **blue**, **face-on**, and **minor axes** galaxies

Outflowing gas appears to be clumpy

Accreting/rotating gas has smaller velocity dispersions and larger column densities

Red galaxies may have rotating gas, but little/no outflowing gas

High Ionization CGM (OVI)

Presence of gas is azimuthal angle dependent: prefers **major** and **minor** axes

Kinematics same regardless of galaxy color, azimuthal angle, or inclination

Ionization conditions vary with azimuthal angle?

Galaxy Environments

Galaxy interaction signatures in MgII?

CGM too hot in OVI?