

The Fast Radio Burst population as observed by ASKAP

Dr Ryan Shannon, Swinburne & Ozgrav On behalf of the ASKAP-CRAFT Survey Science Project

lit: Mia Walker (ICRAR-Curtin)

- Fast radio bursts
- ASKAP + CRAFT
- The fly's eye survey
- Special snowflakes
- Connection to other FRB. populations
 - **Breaking news from Parkes**

No twitter, please

CRAFT:

Commensal Realtime ASKAP Fast Transient Survey PIs: K. Bannister, J.-P. Macquart, R. M. Shannon CASS/Curtin/Swin/UCSC/USyd++

Fast Radio Bursts (FRBs)

- Discovered in pulsar surveys with the Parkes telescope as highly dispersed, short, bright single pulses of radio emission
 - High Galactic latitudes
 - Dispersion measure (DM) well in excess of any credible model of Milky Way DM
 - Very good agreement with t ~ frequency⁻²
 - Some show evidence for being broadened by scattering
- No definitive emission mechanism
 - Cosmological (Gamma-ray bursts?)
 - Galactic (flare stars?)
 - Terrestrial (lightning?)
 - Anthropogenic (RFI?)

A Bright Millisecond Radio Burst of Extragalactic Origin

D. R. Lorimer,^{1,2}* M. Bailes,³ M. A. McLaughlin,^{1,2} D. J. Narkevic,¹ F. Crawford⁴

Fast Radio Bursts (FRBs)

- Frequent
 - 2000 6000 per day over the entire sky at Parkes sensitivity levels
 - Difficult to associate with other classes of known transient
 - Measure brightness in integral units of "fluence"
 - Jansky-millisecond
- Rarely detected given limited field of view of current telescopes (1 per 10 days of observing with Parkes)
- Why care?
- Represent a new unusual class of (coherent) radio emission
- If cosmological, opportunity to probe diffuse intercluster plasma
 - Sensitive to entire column density of electrons along line of sight
 - Find missing baryons (via electrons)
 - Study intergalactic plasma: (is it clustered around galaxies more more diffusely spread through space)
 - With polarisation (rotation measure), study magnetic field of Universe

www.sciencemag.org SCIENCE VOL 341 5 JULY 2013

SWINBURNE UNIVERSITY OI TECHNOLOGY

A Population of Fast Radio Bursts at Cosmological Distances

D. Thornton,^{1,2}* B. Stappers,¹ M. Bailes,^{3,4} B. Barsdell,^{3,4} S. Bates,⁵ N. D. R. Bhat,^{3,4,6} M. Burgay,⁷ S. Burke-Spolaor,⁸ D. J. Champion,⁹ P. Coster,^{2,3} N. D'Amico,^{10,7} A. Jameson,^{3,4} S. Johnston,² M. Keith,² M. Kramer,^{9,1} L. Levin,⁵ S. Milia,⁷ C. Ng,⁹ A. Possenti,⁷ W. van Straten^{3,4}

The FRBs as seen by Parkes

- Larges surveys conducted with 64-m Parkes radio telescope/ 20cm multibeam system
- BPSR backend: upgraded system designed to see bursts in "hi-fi"
- High Time Resolution Universe Survey and other bespoke searches
 - Search for bursts in real time
- Variable widths and levels of scattering
- Evidence for polarisation
- One with "double pulse"

FRBs beyond beyond 1400 MHz

- FRB detected with Green-bank telescope at 800 MHz (30 cm)
 - FRB 110523 (Masui et al. 2015)
- Detected in processing of HI intensity mapping experiment
- Shows strong linear polarisation
- In contrast, others shows strong circular polarisation (Petroff et al. 2015)
- High RM -> significant host contribution to electron column density

FRBs beyond Parkes

- Arecibo FRB 121102
 - Spitler et al. 2014
- Detected in Pulsar ALFA survey
 - ALFA 7 beam equivalent to Parkes multibeam system
 - 0.4 Jy peak flux
 - Inverted spectrum: instrumental effect?
- Galactic plane, but anti-centre
- Only 2x galactic DM
 - No reason to expect overdensity of plasma along this line of sight

Challenges with single dish searches

- Poor localization due to receiving system
 - Single element (GB)
 - Sparsely sampled focal planes (Parkes, Arecibo)
 - Uncertain location within beam pattern (0.25 deg for Parkes)
- Consequences
 - Uncertainty about burst attenuation/implied brightness
 - Unable to determine unique host (star/galaxy/etc.)
- Localize in real time
 - Real time searches
 - Look for transients at other wavelengths

An FRB with an afterglow

FRB 150418 (Keane et al. 2016)

- Fading radio source discovered with ATCA and coincident and contemporaneous with FRB
- Host galaxy of radio afterglow identified (z ~ 0.5)
- Consistent with DM-z relationship
 - "solved" missing-Baryon problem

UNIVERSITY O

al. (2016)

et

Keane

An FRB with an afterglow

FRB 150418 (Keane et al. 2016)

- Fading radio source discovered with ATCA and coincident and contemporaneous with FRB
- Host galaxy of radio afterglow identified (z ~ 0.5)
- Consistent with DM-z relationship
 - "solved" missing-Baryon problem
- Subsequent observations have shown that source has re-brightened
 - Intrinsic variability?
 - Scintillation
- Even if not associated, an unusual transient

UNIVERSITY C TECHNOLOG

A repeating FRB source

Continued monitoring of the Arecibo FRB (121102): detections of repeat pulses (Spitler et al. 2016)

- Wildly variable spectral index
- No obvious periodicity in the pulses
 - Fast rotation?
 - Magnetar-like emission?
- Enables follow up with interferometers
 - Arcsecond position: unique host identification

UNIVERSITY O

De-dispersed time series 300 UNIVERSITY C TECHNOLOG 200 Sign 3,400 3 2 1 0 -1 -2 -3 -4 <u>م</u> 3,200 Right ascension offset (arcmin) ₫ 2 3.000 2,800 2.600 _0.05 0.00 0.05 0.10 0.15 0.20 -5 0 5 10 15 20 25 30 3 0 -5 5 Time offset (s) Signal-to-noise ratio Right ascension offset (arcsec) Chatterjee et al. (2017)

Declination offset (arcmin)

clination offset (ar

Bassa et al. (2017)

The repeater: localized

- Follow up observations with radio interferometers (VLA, EVN)
- Identified to reside in dwarf galaxy at redshift z~
 0.2 (Chaterjee et al. 2017)
 - Coincident with unusual radio nebula (Marcote et al. 2017)
 - AGN/supercharged supernova remnant
 - Within H-alpha emission region (Bassa et al. 2017)
- Association with magnetar/superluminous supernova/long gamma-ray bursts?

The repeater: magnetized

- Faraday rotation expected for radio waves propagating through magnetized plasma
- Strength of effect proportional to product of electron density and line of sight magnetic field
- For repeating FRB: 10⁵ rad m⁻²
 - mG magnetic field strengths
 - Larger than for any pulsar in our galaxy, other FRBs with polarization
 - Only found in vicinities of supermassive black holes
 - RM variable at > 10% level
- Is the FRB source a neutron star orbiting black hole?

Burst profiles

Another super-bright FRB 150807

- Discovered at Parkes while timing millisecond pulsar
- Low DM (for FRB)
 - -265.5 ± 0.1 pc cm⁻³
 - (Pulsar in field: 11 pc cm⁻³)
- Bright: Detected in 2 beams
 - Good localisation (for PKS)
 - Correct for attenuation: robust flux density estimate
- Highly linearly polarized, little Faraday rotation
 - Extragalactic field < 10 nG
- No repeat in hundreds of hours of follow up observations
- Conclusion: bright FRBs aren't rare (Ravi, Shannon et al., 2016, Science)

The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst

V. Ravi,^{1*}† R. M. Shannon,^{2,3*}† M. Bailes,^{4,5} K. Bannister,² S. Bhandari,^{4,5} N. D. R. Bhat,^{3,5} S. Burke-Spolaor,⁶ M. Caleb,^{4,5,7} C. Flynn,^{4,5} A. Jameson,^{4,5} S. Johnston,² E. F. Keane,⁸ M. Kerr,² C. Tiburzi,⁹ A. V. Tuntsov,¹⁰ H. K. Vedantham¹

Localization of FRB 150807

- Localization region: 8x2 arcminutes
- VISTA sources (deepest optical survey of field)
 - 3 (main sequence) stars
 - 6 galaxies
 - Brightest galaxy: elliptical/lenticular
 - $z_{photo} \sim 0.2 0.4$
 - 95% probability that z > 0.125
 - Caveat: dwarf galaxies

SWINBURNE * NE *

Implications for the cosmic web

- Redshift > 0.12 (distance > 500 Mpc)
 - Suggests bright FRBs occur at cosmological distances
- Low RM -> non magnetized plasma

 $- <B_{||} > < 18 \text{ nG}$

- Most of DM is extragalactic (not magnetized)
- DM consistent with z ~ 0.25
- Broadband scintillation: consistent with Galactic scattering
- Narrowband scintillation -> IGM?
 - Scattering measure (level of turbulence): 10⁻¹³ Gpc m^{-20/3}
 - In ballpark of predictions (Macquart & Koay 2013)

Open questions

- Are FRBs real? Repeaters, yes. Others show significant evidence for astrophysicality
- Do they repeat? At least one of ~30
- Where do they come from (local, extragalactic, cosmological)? *Extragalactic-cosmological*
- What causes them? (*Pulsars, magnetars or something more exotic?*)
- How many (gulp) classes? (Are repeating and non-repeating FRBs caused by the same thing: Occam?)
- Can we use them to meaningfully study the intergalactic medium? Need to tease out host and Milky Way contributions
- How do we find more/increase yield? (*Wide-field*)
- How unique is the (first) Lorimer burst? (*Still the brightest, but not by as much*)
 - Significant fraction of population could be detected with smaller wider field telescopes

Australian Square Kilometre Array Pathfinder

- Murchison Shire, Western Australia
- 36 x 12-metre antennas
- Focal plane arrays: 36 digital beams on the sky
- Each PAF: 30 deg² field of view
- 336 MHz available bandwidth
- Available frequency band: 0.7-1.8 GHz
- S_{sys}: 1800 Jy
- Signal path:
 - PAF (RfoF) -> Digital Receiver -> Beamformer (don't use correlator)
- Dominant sources of interference: satellites, lightning (rare), chirps and 300 Hz.
- Currently in commissioning and early-science phase

SWINBUR * NE *

CRAFT mode/processing

- Data products produced in beamformer:
 - 1 MHz spectral resolution
 - 1.26 ms time resolution
 - Other telescopes: PKS 400 kHz/64 $\mu s.$
- Searched offline using "FREDDA" algorithm on ingest machines (mostly)/ Pawsey supercomputer (occasionally)
 - Current archive at Pawsey: 1 PB

Fly's eye survey: Motivation

- Easy: obvious first step for commissioning instrument
- Maximise instantaneous field-of-view
 - Each antenna: 30 deg²: (currently 180-360 deg²; in principle up to 1080 deg² with full ASKAP)
- Fixed, high Galactic latitude (|b| = 50°)
 - Rates higher at high latitude? (Petroff et al 2014, Macquart & Johnston 2015, but see Bhandari et al .
 2018)

UNIVERSITY C

- Lower DM contribution from Milky Way (30-40 pc cm⁻³)
- 57 fields, 57 minutes per pointing: re-observe fields regularly
- Central frequency of 1300 MHz
 - Direct comparison to Parkes
- Calibration:
 - Digital beamforming done with Sun (beam weighs change from set to set)
 - For each set of beam weights, observe pulsar in all beams
 - Observe pulsar (Vela, B1641-45) at centre of a central beam (15)

ASKAP detects its first FRB

- Late 2016: new data capture modes finished
- First scientific observing run in January 2017: 6 antennas
- First FRB (170107; Bannister et al. 2017)

UNIVERSITY O TECHNOLOGY

Backround: CHIpass map (Calabretta et al. 2014)

FRB 170107

- "Easy": detected FRB with 3.5 days of observing
- Dispersion measure: 609.5(5) pc cm⁻³
- Peak flux density > 20 Jy
 - Confirms presence of population of bright FRBs
- Strong spectral cutoff

Background: NVSS map of galaxies Blue: ASKAP pixels for one antenna Red: region where FRB could be coming from

SWIN BUR * NE *

ASKAP localizations

- Overlapping beams: expect multiple detections
- Use detections (and non-detections) to determine localization of burst
 - Account for uncertainties in beam gain (sensitivity), width, and position
 - Bayesian search methods using multinest algorithm to sample posterior distribution
 - Achieve precision of ~ beam width/ (Signalto-noise ratio) as expected

SWINBURNE * NE *

ASKAP fly's eye localizations

- Localize FRB to ~ 8x8 arcmin region (90% containment)
- Insufficient precision to identify unique host galaxy
 - Improvement over other single-dish measurements
 - Enables follow up with larger aperture facilities
- Strong constraints (upper and lower limits on burst fluence)
 - Important for constraining source brightness distribution and luminosity function
- Confirm technique by localizing pulsars to < arminute precision

Posterior localization region

Posterior energy distribution

Future of CRAFT

- ASKAP-8 ->ASKAP36
 - Remaining digital systems on site this year
 - Detection rate will depend on access to antennas but will roughly proportional to N_{ant}
- Interferometric mode commissioning
 - Real time incoherent sum searches
 - Incoherent sum detection rate is N_{ant}^{1/4} worse than fly's eye
 - Trigger voltage buffers
 - Off-line correlation
 - Enables localisation + polarimetry, coherent dedispersion
- Keck/Gemini/VLT proposals for follow up/host galaxy studies

