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No hot and luminous progenitor for
most Type Ia supernovae

Woods, Ghavamian,
Badenes, and
Gilfanov, Nature
Astronomy, 2017

See also, e.g., Woods
& Gilfanov 2013,
2014, 2016 Johansson,
Woods et al., 2014,
2016
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The Origin of High-redshift Quasars
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The Origin of High-redshift Quasars

Truly massive (109–1010M
⊙

) quasars have been
observed at redshift ∼7 (e.g., Mortlock+ 2011,
Wu+ 2015).

This is hard to explain:

tgrowth ∼ 0.1 log10

�

MBH

Mseed

�

Gyr

Especially given pop III black holes “born starving”
(Alvarez, Wise, & Abel 2009)
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The Origin of High-redshift Quasars
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The Origin of High-redshift Quasars

See review by Mar Mezcua, 2017
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Supermassive Stars – a little history

How massive is supermassive? 104–106M
⊙

Initially hypothesized candidate for quasars

Assumed to be formed “all at once” (monolithically)

Strongly radiation-dominated (β=
Pgas

Ptot
<< 1):

P∝ ρ
4
3 → polytrope, with index n = 3

Local adiabatic index Γ = 1+ 1

n
≈

4

3
+
β
6
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Supermassive Stars – a little history

Objects with Γ ≈ 4/3 are “trembling on the verge of
instability” (Fowler 1964)

Very small perturbation can trigger collapse!

Chandrasekhar (1964) and others showed that there
is a general relativistic correction to the critical

pressure support needed: Γ ≈ 4/3+ 1.122GM
Rc2

Criterion for instability:
β
6
< 1.122GM

Rc2

β∝M−
1
2 for β<< 1→∼ 105–106M

⊙
stars will

quickly collapse!
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KEPLER Stellar Evolution Code

implicit Lagrangian hydrodynamics and stellar
evolution (Weaver, Zimmerman, and Woosley 1978)

solve conservation equations for mass, energy, and
momentum in spherical symmetry

equation of state allowing for general mixture of
radiation, ions, and electrons of arbitrary
degeneracy and relativity, as well as pair production

include post-Newtonian correction to the
acceleration due to gravity (e.g., Fuller+ 1986)
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Monolithic Supermassive Stars
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Monolithic Supermassive Stars
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Supermassive Stars
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Supermassive Stars
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How do you actually make a
supermassive star?

Option 1: Regan+, Nature Astro, 2017
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How do you actually make a
supermassive star?

Option 2: high baryonic streaming velocities
(Tanaka & Li 2014; Schauer et al., 2017; Hirano et
al., 2017). Essentially an atomically-cooled halo
with an assist?

Option 3: really massive infall rates possible in
high-z galaxy mergers? (Maier et al 2015)

Option 4: Coalesence of a dense stellar cluster?
(problems, see Latif et al., 2016)
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Initial Conditions

Begin with a 10M
⊙

, n = 3 polytrope with a central
density of 10−3gcm−3

→ a somewhat “puffy”
protostar.

Primordial composition, including deuterium and
lithium.

Consider accretion rates in the range 0.01 – 10
M
⊙
/yr, typical of atomically-cooled haloes
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Accreting Supermassive Stars Don’t
Know how to Relax!

Haemmerle, Woods, et al. (2017)
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The Onset of Nuclear-burning
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A Representative Case: 1M
⊙
/yr
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Reminder: criterion for onset of
instability

Recall the Chandrasekhar general relativistic
instability for supermassive stars:

P∝ ρ
4
3 → polytrope, with index n = 3

Local adiabatic index Γ = 1+ 1

n
≈

4

3
+
β
6

Chandrasekhar (1964) and others showed that there is a
general relativistic correction to the critical pressure

support needed: Γ ≈ 4/3+ 1.12 2GM

Rc2

Polytropic criterion for instability: β
6
< 1.12 2GM

Rc2
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When does collapse set in?
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The Most Massive Stars that Ever Lived!?

Collapse after H-exhaustion

GR collapse during H-burning

Hydrostatic limit for H-burning monolithic stars

Hydrostatic limit for He-burning monolithic starsfin
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The Most Massive Stars that Ever Lived!?
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Accreting Supermassive Stars with
“realistic” accretion rates
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Accreting Supermassive Stars with
“realistic” accretion rates
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Rotating Supermassive Stars

ΩΓ -limit: known problem from “normal” Pop I
massive star evolution

v2
crit,1

Req
=

GM

R2
eq
→ vcrit,1 =
Ç

GM
Req

v2
crit,2
= 2πGρ(1− ΓEdd)R

2
eq
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Rotating Supermassive Stars

Haemmerle et al., 2017, submitted: Supermassive
stars have to be slow rotators (vsurf < 10−20%vcrit,1).

Supermassive star formation by accretion requires
mechanisms efficient enough to remove most
(≈99%) of the angular momentum from the
accretion disc.

Need to get rid of a lot of angular momentum
somehow! Spiral arms in the disk? Magnetic
braking?
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Conclusions

Supermassive protostars accreting ¦ 0.1M
⊙
/yr

collapse due to the GR while H-burning
Final fate of (non-rotating) supermassive stars
depends in a reliable way on accretion rate (variable
rates qualitatively similar)
Rotation rates of supermassive stars strongly
constrained
Even for non-rotating case, n=3 polytrope poorly
predicts moment of collapse... including when
applied only to the core.

www.tewoods-astro.com
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KEPLER Stellar Evolution Code
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