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No hot and luminous progenitor for
most Type la supernovae

Woods, Ghavamian,
Badenes, and

Gilfanov, Nature %
Astronomy, 2017 §
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The Origin of High-redshift Quasars

LETTER

doi:10.1038/nature10159

A luminous quasar at a redshift of z=7.085

Daniel J. Mortlock', Stephen J. Warren', Bram P.
Chris snnpsun‘ Tom Hmum" ©, Eduardo A Gon ales-Solar
Mike J. Irwin®, Ernst Kuiper'!

The intergalactic medium was not completely reionized until
approximately a billion years after the Big Bang, as revealed' by
observations of quasars with redshifts of less than 6.5. It has been
difficult to probe to higher redshifts, however, because quasars have

historically been identified™ in optical surveys, which are insen:
to sources at redshifts exceeding 6.5. Here we report observations of
a quasar (Ul

ASJ112001.48+064124.3) at a redshift of 7.085, which
on years after the Big Bang. ULASJ1120+0641 has a
of 6.3 % 10"°L., and hosts a black hole with a mass of
2% 10°M.. (where L., and M., are the luminosity and mass of the
Sun). The measured radius of the ionized near zone around
ULASJ1120+064

519 megaparses 3 factor of three smaler than

ing that the neutral fraction of the intergalactic medium in front of
ULAS 112040641 exceeded 0.1.

Venemans’, Mites

h Patel', Paul C. Hewett?, Richard G. McMahon®,

ndy Adamson’, Simon Dye*, Nigel C. Hambly’, Paul Hirst'”,

, Andy Lawrence” & Huub J. A. Rnll}.,um}.:”

(SDSS)
ope

photometry from UKIDSS, the Sloan Digital Sky Survey
and follow-up oh«cr\n\nuu,« on UKIRT and the Liverpool
(Ich in Fig. 1) was consistent* with a quasar of redshift z % 6.5
e a ~pm,um was obtained using the Gemini Multi-Object
spuunwpn on the Gemini North Telescope on the night beginning
27 November 2010. The absence of significant emission blueward of a
harp break at 7 = 0.98 jum confirmed ULAS J1120+0641 as a quasar
with a preliminary redshift of 8. Assuming a fiducial flat cos-
‘mological model” (that is, cosmological density parameters 2,, = 0.26,
Q,=0024, Q) = 74 and current value of the Hubble parame
Hy=72kms™"Mpc™"), ULASJ1120+0641 is seen as it was 12.9 billion
years (Gyr) ago, when the Universe was 0.77 Gyr old. Although three
sources have been spectroscopically confirmed to have even higher red-
shifts, two are faint /, 2 26 galaxies®'" and the other is a y-ray burst,
which has since faded". Indeed, it has not been possible to obtain high
signal-to-noise ratio spectroscopy of any sources beyond the most dis-
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The Origin of High-redshift Quasars

o Truly massive (10°-10'°M_) quasars have been
observed at redshift ~7 (e.g., Mortlock+ 2011,
Wut 2015).

o This is hard to explain:

M
tgrowth ~0.1 lOglo <M—BH> Gyr

seed

o Especially given pop III black holes “born starving”
(Alvarez, Wise, & Abel 2009)
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The Origin of High
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Figure 1 Schematic diagram [reproduced from Rees (106)] showing possible routes for
runaway evolution in active galactic nuclei.
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The Origin of High-redshift Quasars
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Supermassive Stars - a little history

How massive is supermassive? 10°-10°4_

Initially hypothesized candidate for quasars

Assumed to be formed “all at once” (monolithically)

Strongly radiation-dominated (8 = g” - << 1):

o P ,03 — polytrope, with 1ndex n=3
o Local adiabatic indexI' =1 -|— % + é
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Supermassive Stars - a little history

o Objects with I' & 4/3 are “trembling on the verge of
instability” (Fowler 1964)
o Very small perturbation can trigger collapse!

o Chandrasekhar (1964) and others showed that there

is a general relativistic correction to the critical
ZGM

26H
o Criterion for instability: ’f G

o BocM™ 3 for B<<l—~ 105—106M® stars will
quickly collapse!
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KEPLER Stellar Evolution Code

o implicit Lagrangian hydrodynamics and stellar
evolution (Weaver, Zimmerman, and Woosley 1978)

@ solve conservation equations for mass, energy, and
momentum in spherical symmetry

@ equation of state allowing for general mixture of
radiation, ions, and electrons of arbitrary
degeneracy and relativity, as well as pair production

o include post-Newtonian correction to the
acceleration due to gravity (e.g., Fuller+ 1986)
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Monolithic Supermassive Stars
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Monolithic Supermassive Stars
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Supermassive Stars
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Supermassive Stars
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How do you actually make a
supermassive star?

Background
| Radiation Only Pop III Star
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Option 1: Regan+, Nature Astro, 2017
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How do you actually make a

supermassive star?

@ Option 2: high baryonic streaming velocities
(Tanaka & Li 2014; Schauer et al., 2017; Hirano et
al., 2017). Essentially an atomically-cooled halo

with an assist?

@ Option 3: really massive infall rates possible in
high-z galaxy mergers? (Maier et al 2015)

o Option 4: Coalesence of a dense stellar cluster?
(problems, see Latif et al., 2016)
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Initial Conditions

o Begin with a 10/, n = 3 polytrope with a central
density of 10gcm™ — a somewhat “puffy”
protostar.

o Primordial composition, including deuterium and
lithium.

o Consider accretion rates in the range 0.01 - 10
M [yr, typical of atomically-cooled haloes
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Accreting Supermassive Stars Don’t
Know how to Relax!

| rrrr|rrr . rrr o 11t 7T

5 E \ KH time (ZAMS/500M,)
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o
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Haemmerle, Woods, et al. (2017)
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The Onset of Nuclear-burning
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A Representative Case: 1M /yr

enclosed mass (10° M)
" loglera/g/s)

100
time (kyr)

TITANS OF THE EARLY UNIVERSE July 18, 2018 20/31



|
Reminder: criterion for onset of
instability

o Recall the Chandrasekhar general relativistic
instability for supermassive stars:

o P /o;l — polytrope, with index n =3

Local adiabatic index ' =1+ % R~ % + g
Chandrasekhar (1964) and others showed that there is a
general relativistic correction to the critical pressure

support needed: '~ 4/3 + 1. 122RG£4

Polytropic criterion for instability:

e ¢

ZGM

)

6
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When does collapse set in?

B/6, 1.12(2GM)/Rc?
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The Most Massive Stars that Ever Lived!?

T
30 D Collapse after H-exhaustion
D GR collapse during H-burning
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The Most Massive Stars that Ever Lived!?

Table A3. Model at M =0.1

Supermassive Pop III Stars

age [vr]

log(M/M..)

log(R/R.)

log(L/L.)

log(Tea[K])

log(Sionl:

log(Suwls ™))

1.000e-+02
72402
36e-+02
975e+02
982e+02
.983¢-+02
985e+02
987e+02
.990e-+02
993e+02
5.998¢+02
6.003e-+02
6.011e+02
6.022¢-+02
6.038¢-+02
6.059¢-+02
6.086e-+02
6.110e-+02
e-+02
210e+02
8.122e-+02
9.100e-+02
1.036e-+03
1.183¢+03
1.356e+03
1.55de+03
1.776e+03
2.037e+03
5de-+03
2.753¢+03
3 +

2 8K60-+03

9

5
5

7

1.000e+00
1.260e+00
1.412e+00
1.419+00
1.420e+00
1.420e+00
1.420e+00
L421e+00
L.421e+00
1.422e+00
422e+00
23e-+00
de+00
426e+00

1.586e+00
1.678e+00
L.759+00
1.846e+00
1

2

1928e+00
009e+00
2.086e-+00
2.159¢+00
2.231e+00
305¢-+00
383¢-+00
166e-+00
2 AR0e-00

2.235e+00
2.090e+00
2.112e+00
2.155+00
2.185e+00
2.199¢+00
2.210e+00
2.222¢+00
2.236e+00
2.253¢+00
2.273e+00
2.208e+00
331e+00
2.373e+00
2.431e+00

3.007¢+00

3.057e+00
3.096e+00
3.153e+00
3.198¢+00
3.241e+00
3.283¢+00
3.326e+00
3.369¢+00
3.415¢+00
3.460e+00
504e+00
190400

2

1.133+00

9430400
4.043e+00
4.144e+00
4.254e+00
1.360e-+00
14.463e+00
4.567e+00
4.669+00
4.770e+00
1.872e+00
4.97de+00
5.076e+00
5.176e+00

6.093¢+00

93e+00

6.394e+00
6.494e+00
6.594¢+00

le+00
6.794¢+00
6.894e+00
0040400

3.678¢+00
3.703e+00
3.717e+00
721e+00
3.733e+00
3.752e+00
3.773e+00
3.793e+00
3.811e+00
3.828¢+00
3.843¢+00

5e+00
9e+00
866e-+00
850e-+00
3.822e+00
3.784e+00
711e+00
3.706e+00
3.706e+00
3.712e4+00
709¢-+00
3.711e+00
+00
3.719¢+00
3.723e+00
3.726e+00
3.728¢+00
3.731e+00
3.734e+00
2 7360400

7

3.

3.794e+01
3.838e+01
3.895e+01
3.916e+01
3.959¢+01
1.018¢+01
1.073e+01

1.265¢+01
1.298¢+01
4.325e+01
4.346e+01
5e+01
27e+01

1.078e+01
1.077e+01
1.087e+01
1.108e+01

129e+401

1

1.151e+01
4.171e+01
1.181e+01
1.202¢+01
1.222e401
19390401
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1.022¢+01
4062401
4103401
4.120e+01
4.160e-+01
1.209¢+01
4.261e+01
4303401
4.348e+01
1.384e+01
1.419¢+01
1.448e+01

473e401
4.490e+01
1.493¢+01
1.482e+01

345e401

.363e+01
.380e-+01

.397e+01
107e+01
123e+01

1
1
1
1
4
1
1.328¢+01
1
1
4
1
1
1
1 4400401
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Accreting Supermassive Stars with
“realistic” accretion rates
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Accreting Supermassive Stars with
“realistic” accretion rates

enclosed mass (105M,)

time (kyr)
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Rotating Supermassive Stars

o QI'-limit: known problem from “normal” Pop I
massive star evolution

o Yo _ GM o . — [CH
=M Ly =]
ch ch crit,1 Req

=2nGp(1—Tg4oRe,

cnt 2
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Rotating Supermassive Stars

o Haemmerle et al., 2017, submitted: Supermassive
stars have to be slow rotators (v, s < 10—20%v,; ).

@ Supermassive star formation by accretion requires
mechanisms efficient enough to remove most
(x99%) of the angular momentum from the
accretion disc.

o Need to get rid of a lot of angular momentum
somehow! Spiral arms in the disk? Magnetic
braking?
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Conclusions

@ Supermassive protostars accreting 2 0.1M [yr
collapse due to the GR while H-burning

o Final fate of (non-rotating) supermassive stars
depends in a reliable way on accretion rate (variable
rates qualitatively similar)

o Rotation rates of supermassive stars strongly
constrained

o Even for non-rotating case, n=3 polytrope poorly
predicts moment of collapse... including when
applied only to the core.

www.tewoods-astro.com
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KEPLER Stellar Evolution Code

dv P Ggm, 41 dQ
27— 4 2 _ rel™"r T
dc dm, r2 - r dm,
du d (v dL
4P )ranQa—(2) -
dt " er(vr )T 47Q m,_\r 9m7+6
P 2GM 4nPr?
GreI:G<1+ B ’;)
oc re m.,c
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