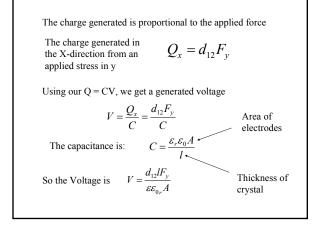


• A piezoelectric sensor can be thought of as a capacitor, with the piezoelectric material acting as the dielectric. The dielectric acts a generator of electric charge resulting in a potential V across the capacitor.

• The process is reversible. An electric field induces a strain in the material. Thus a very small voltage can be applied, resulting in a tiny change in the size of the crystal.

Characterisation of Piezoelectrics


Piezo crystals are transducers;

They convert mechanical to electrical energy.

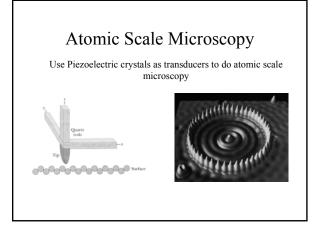
The conversion efficiency is given by $K_{mn} = \frac{d_{mn}^2 Y}{\varepsilon_0 \varepsilon_{mn}}$ the coupling coefficient:

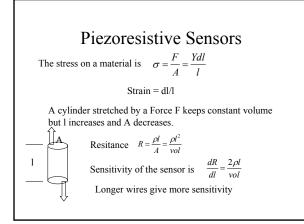
Where Y is Young's Modulus = Stress/strain

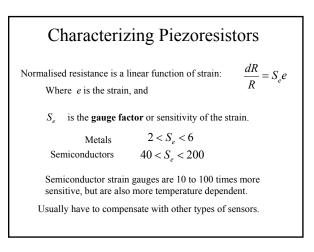
$$Y = \frac{\sigma}{\frac{dl}{l}}, \ \sigma = stress = \frac{F}{A} = \frac{Force}{Area}$$

Some Piezoelectrics

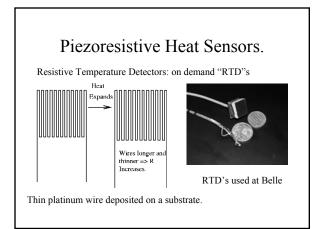
	PVDF	BafiOg	P27	Ouet?	708
Density (x10 ³ kg/m ³)	1.78	5.7	7.5	2.65	1.69
Dielectric constant, r _e	12	1700	1200	4.5	45
Elastic modulus (10 ¹⁰ N/m)	0.3	11	8.3	7.7	3
Pezoelectric constant (pC/N)	d31+20 d32=2 d33=-30	78	110	2.3	25
Pyroelectric constant (10 ⁻⁴ C/m ² K)	4	20	27		30
Electromechanical coupling constant (%)	11	21	30	10	
Acoustic impedance (10 ⁶ kg/m ² s)	2.3	25	25	14.3	

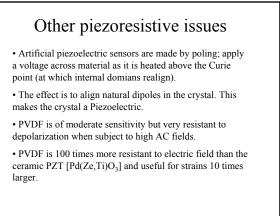

Numerical Example.

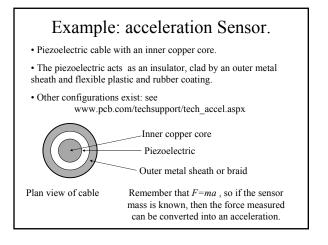

What is the sensitivity of 1 mm thick, $BaTiO_3$ sensor with an electrode area of 1 square cm?


$$V = \frac{d_{12}IF}{\varepsilon_r \varepsilon_0 A} = \frac{78 \times 1 \times 10^{-3} F}{1700 \times 8.8 \times 10^{-12} I \times 10^{-4}} = \frac{7.8 \times 10^{-2} F}{1.5 \times 10^{-12}}$$

So $\frac{V}{F} = 5.2 \times 10^{10}$ Volts/Newton


This is a big number because the effective capacitance is so small. In the real world the voltage is smaller.


$$C = \frac{1.5 \times 10^{-12}}{1 \times 10^{-3}} = 1.5 nF$$
 Very Small!



Applications for piezoelectric accelerometers

- Vibration monitor in compressor blades in turboshaft aircraft.
- · Detection of insects in silos
- Automobile traffic analysis (buried in highway): traffic counting and weighing.
- Force and pressure sensors (say, monitoring jolts to packages).
- \bullet Tactile films: thin silicone rubber film (40 $\mu m)$ sandwiched between two thin PVDF films.

If tactile sandwich is compressed, the mechanical coupling in the PVDF/rubber/PVDF sandwich changes, the measured AC signal changes, and the demodulation voltage changes