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10/8/2004 Principles and applications of sensors

Molecular Spectroscopy
• Molecular Energy Levels

– Vibrational Levels
– Rotational levels

• Population of levels
• Intensities of transitions
• General features of spectroscopy
• An example: Raman Microscopy

– Detection of art forgery
– Local measurement of temperature
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Molecular Vibrations
• Longitudinal Vibrations along 

molecular axis
• E=(n+1/2)hf

where f is the classical 
frequency of the oscillator

•

where k is the ‘spring constant
• Energy Levels equally spaced
• How can we estimate the 

spring constant?
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Molecular Vibrations

• Evib=(n+1/2)hf ⇒ f =0.273eV/(1/2(h)) 
= 2.07x1013 Hz

• To determine k we need µ
µ=(Mm)/(M+m) =(1.008)2/2(1.008) amu

=(0.504)1.66x10-27kg =0.837x10-27kg

• k= µ(2πf)2 =576 N/m
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Mm/(M+m)

Hydrogen molecules, H2, have ground state vibrational energy 
of 0.273eV. Calculate force constant for the H2 molecule (mass 
of H is 1.008 amu)
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Molecular Rotations

• Molecule can also rotate 
about its centre of mass

• v1 = ωR1 ; v2 = ωR2

• L = M1v1R1+ M2v2R2

= (M1R1
2+ M2R2

2)ω
= Iω

• EKE = 1/2M1v1
2+1/2M2v2

2

= 1/2Iω2
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Molecular Rotations

• Hence, Erot= L2/2I
• Now in fact L2 is quantized and 

L2=l(l+1)h2/4π2

• Hence Erot=l(l+1)(h2/4π2)/2I
• Show that  ∆Erot=(l+1) h2/4π2/I. This is not 

equally spaced
• Typically ∆Erot=50meV (i.e for H2)
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Populations of Energy Levels
• Depends on 

the relative 
size of kT
and ∆E

∆E<<kT ∆E=kT ∆E>kT

∆E

(Virtually) all 
molecules in ground 

state

States almost equally 
populated
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Intensities of Transitions

• Quantum 
Mechanics predicts 
the degree to which 
any particular 
transition is 
allowed. 

• Intensity also 
depends on the 
relative population 
of levels

Strong 
absorption

Weak 
emission

Transition 
saturated
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General Features of Spectroscopy

• Peak Height or 
intensity

• Frequency
• Lineshape or 

linewidth
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Raman Spectroscopy
• Raman measures the 

vibrational modes of a solid
• The frequency of vibration 

depends on the atom masses 
and the forces between them.

• Shorter bond lengths mean 
stronger forces.
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Raman Spectroscopy Cont...

Laser In Sample

Lens

Monochromator

CCD array

•Incident photons typically 
undergo elastic scattering.
•Small fraction undergo 
inelastic ⇒ energy transferred 
to molecule.
•Raman detects change in 
vibrational energy of a 
molecule.
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Raman Microscope
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Tom Roberts, ‘Track To The 
Harbour’ dated 1899

Detecting Art Forgery

• Ti-white became available 
only circa 1920.

• The Roberts painting shows 
clear evidence of Ti white but 
is dated 1899
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Raman Spectroscopy and the Optical 
Measurement of Temperature

• Probability that a level is occupied is 
proportional to exp(∆E/kT)


