Sensors of Structure

- Matter Waves and the deBroglie wavelength
- Heisenberg uncertainty principle
- Electron diffraction
- Transmission electron microscopy
- Atomic-resolution sensors

deBroglie

- Postulated that all objects have a wavelength given by
 - $-\lambda = h/p$
 - λ =wavelength
 - h=Planck's constant
 - p=momentum of object
- In practice, only really small objects have a sensible wavelength

Wave-Particle duality

- A consequence of the deBroglie hypothesis is that all objects can be thought of as "wavicles": both particles and waves
- This has troubled many philosophicallyminded scientists over the years.
- Inescapable if we want to build atomic-resolution sensors.

Heisenberg Uncertantity Principle

- Cannot simultaneously measure an object's momentum and position to a better accuracy than $\hbar/2$
 - $-\Delta p_x \Delta x \ge \hbar/2$
- Direct consequence of wave-particle duality
- Places limitations on sensor accuracy

Electron Diffraction

- Accelerated electrons have wavelength of order 1 Angstrom=1e-10m
- Same order as atomic spacing
- Electrons undergo Bragg diffraction at atomic surfaces if the atoms are lined up in planes, ie a crystal

Diffraction Patterns

- Only certain angles of reflection are allowed.
- The diffracted electrons form patterns.
- In polycrystalline material, these are rings

X-rays on left, electrons on right.

- Single crystal Ni target
- Proved deBroglie hypothesis that $\lambda = h/p$

Proof that $\lambda = h/p$

Accelerated electrons have energy eV: $eV = \frac{1}{2} mv^2 \Rightarrow v = (2Ve/m)^{1/2}$ de Broglie said: $\lambda = h/p = h/(mv) = h/(2mVe)^{1/2} = 1.67 \text{ Å}$ Davisson-Germer found lattice spacing: $\lambda = dsin\theta = 1.65 \text{ Å}$

Excellent agreement between theory and experiment!

Pressure sensing

- Atomic spacing changes with pressure: – Pressure= $E(\Delta L/L)$
 - E=Youngs modulus (N/m²)
- As d changes, angle of diffraction changes
- · Rings move apart or closer together

STM and AFM

- Electron diffraction can probe atomic lengthscales, but
 - Targets need to be crystalline
 - Need accelerated electrons=>bulky and expensive apparatus.
 - Need alternatives!

- Image shows 'Quantum corral' of 48 Fe atoms on a Cu surface
- Low-temp STM used for assembly and imaging
- Can see Schrodinger standing waves
- Colors artificial

Quantum Mechanics

- STM and AFM inherently quantummechanical in operation
- Need to understand the electron wavefunction to understand their operation
- We need some QM first

The wavefunction

- The electrons of an atom are described by their wavefunction:
 - $-\Psi = \Psi_0 e^{i/\hbar (px-Et)}$
 - Contains all information about electron
 - Eg probability of electron being in a certain region is $P(x)=\int \Psi^*\Psi dx$

Schrodinger's Eqn

- $-\hbar/2m d^2\Psi/dx^2 + U(x)\Psi = i\hbar d\Psi/dt$
- All 'waveicles' must obey this eqn
- U(x) is the potential well
 - In the case of atoms, it can be approximated by a square well

The square well

- Solve Schrodinger's eqn for a potential
 U(x)=0 between x=0 and x=L
 - $U(x)=U_0$ everywhere else.
- Assume that the solutions do not vary with time (stationary states)

 $-\Psi = \Psi(x)$

Solutions for a square well

- Ψ(x)=Asin(n*pi*x/L) inside the well

 These are simply standing waves in a cavity, with n denoting the mode number
- Same as solution from classical physics

Atomic level imaging and manipulation

- Scanning Tunnelling Microscopy
- Atomic Force Microscopy

Incident -Reflected transmission probability for a particle through a gotential parties a given by the ratio of the transmitted probability density to the incident pobulishy density i.e. T(E) = Menormized 1ª T(Finished)? -> To determine the potability of transmission seed to consider the save is such of the three regions W. The 1-D, time independent SWE is m - # d2401+ UE)401 = E 4(E) in Region I & # UB)=0 $\frac{d^{2}\Psi(k)}{dx^{*}} = -\frac{2mE}{\pi^{2}}\Psi(k) = -k^{*}\Psi(k)$ where $k^2 = i \frac{\pi}{k_{e}}$

Tunnelling phenomena

- If another atom is brought close enough to the first, the wavefunction from the first atom can overlap into the second
- Means the electron has probability of being found in second atom
- Electron has tunnelled through the potential barrier

In STM, a tip is brought in very close proximity to a surface to be analysed: the electrons can tunnel from tip to surface (or vice versa).

Atomic manipulation using STM

- Can move or desorb atoms as well as image.
- Adsorb=stick to surface Desorb=unstick from
- surface Absorb=diffuse into bulk
- Put high voltage on tip to draw current and "arc weld surface"
- Use small bias to pick up atoms and assemble them into cheesy logo

Some gratuitous STM images

Great for grant applications and press releases!

Nanoscale Lithography Selective oxidation of semiconductor surfaces Positioning of single atoms ier are

The STM image

- The STM image is a file of (x,y,height) co-ords
- It can be manipulated to produce all sorts of images
 - Fantastic colour schemes of dubious taste
 - Animation and fly-by videos
- Quantum corrals; can image ewavefunction
 - See the ripples
 - Spiles are Fe d-orbitals
 - Yellow atoms are Cu

The Atomic Force Microscope

- Atomic Force Microscope (AFM)
- STM measures tunelling current; but AFM measures van der waals
- forces directly
 Van der Vaals force attractive with *F_{VDW} ∞1/s⁷*

The AFM

- Detect minute movements in cantilever by bouncing laser off and using interferometry (remember laser sensors)
- Photodetector measures the difference in light intensities between the upper and lower photodetectors, and then converts to voltage.
- Feedback from photodiode signals, enables the tip to maintain either a constant force or constant height above the sample.
- · Atomic resolution
- · Sample need not be electrically conductive

The AFM cantilever

- Most critical component.
- Low spring constant for detection of small forces (Hookes law *F*=-*k*x)
- High resonant frequency to minimise sensitivity to mechanical vibrations $(\omega_o^2 = k/m_c)$
- Small radius of curvature for good spatial resolution
- High aspect ratio (for deep structures), can use nanotubes

AFM

- Can get atomic scale resolution, just like STM.
- Still needs UHV and vibration isolation for atomic scale resolution.
- Different Modes:
 Contact
 - Non-contact (resonant response of cantilever monitored)

Contact mode

- · Responds to short range interatomic forces
 - Variable deflection imaging
 - · scan with no feedback, measure force changes across surface
 - Constant Force imaging
 - Force and cantilever deflection kept constant to image surface topography
- Caution is required to ensure cantilever doesn't damage surface

Non-Contact mode

- Responds to long range interatomic forces ⇒ greater sensitivity required
- Instead of monitoring quasistatic cantilever deflections measure changes in resonant response of cantilever
- Cantilever connected to piezoelectric element – bends with applied potential
- Lower probability of inducing damage to surface

- Cantilever driven close to resonant frequency, ω_o
- If cantilever has spring const, k_o in absence of surface interactions
- Then in presence of force gradient, $F'=dF_z/Dz$ $K_{eff}=k_o$ -F'
- This causes shift in resonant frequency i.e $\begin{array}{l} \omega_{eff}{}^{2=k_{eff}}/m_{c}{}^{=}(k_{o}{}^{-}F')/m_{c}{}^{=}(k_{o}{}^{-}m_{c})(1{}^{-}F'/k_{o})\\ \omega_{eff}{}^{=}\omega_{o}\left(1{}^{-}F'/k_{o}\right){}^{1/2} \end{array}$
- If F' small $\omega_{eff} \sim \omega_o (1 F'/2k_o)$, hence a force gradient F will shift the resonant frequency

