
Solutions to problem sheet 3

640-381: Sensors

September 9, 2004

1 Question 1

1.1 Problem

A copper wire of diameter 1.8 mm carries a steady current of 1.3 A. In Cu,
each atom contributes one freeelectron, so the number of electrons per unit
volume, n, is the same as the number of atoms per unit volume.

For comparison, consider a strip of n-type Si (doped with phosphorous)
which is 3.5 mm wide and 250 µm thick, and carries a current of 5.2 mA.
For Si, n=1.5 × 103electrons/m3.

For both these cases,

• What is the current density?

• What is the drift speed of conduction electrons?

• What is the mean free time τ between collisions ?

Data:
Density

ρCu = 9 × 103kg/m3

Restivity
ρCu = 1.69 × 10−8Ω.m

ρSi = 8.7 × 10−4Ω.m

1.2 Solution

We will revisit this problem when we do solid-state detectors and a little
more semiconductor theory in a few weeks.
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2 Question 2

2.1 Problem

Restivity, and thus resistance, vary with temperature according to

ρ(T ) = ρ0[1 + α(T − T0)]

where ρ0 = 1.69µΣ.cmwhenT0 = 293K
A secondary thermometric standard for measuring temperature in the

range 14-900 K on the International Temperature Scale is a platinum resi-
tance thermometer (αPt = 3.9 × 10−3K−1). For a Pt wire thermometer of
diameter 0.1 mm and length 3 cm, what is the resistance at 14 K and 900
K?

A Pt resistive temperature detector (RTD) has a resistance given by

R = R0(1 + 39.08 × 10−4T − 5.8 × 10−7T 2)

where R(T = 0◦) = 100Ω.
What is the difference between the linear and second order resistance

values at T = 150◦? To how large an error in temperature is this equivalent?

2.2 Solution

ρ(14K) = 1.69[1 + 3.9 × 10−3(14 − 293)]

= −0.704Ω.cm

Yikes! This negative restivity is unphysical, so this result tells us that
the equation is not valid at such low temperatures. In fact, a new theory of
restivity is needed at low temperatures. A bit of a trick question.

ρ(900K) = 1.69[1 + 3.9 × 10−3(900 − 293)]

= 5.69Ω.cm
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R(900K) =
ρL

A

=
(5.67)(3)

π(0.005)2

= 0.217Ω

The resistance expression has a linear component and a smaller quadratic
component. Note that we are not told that the RTD is a wire, so we can’t
necessarily use the expression for the restivity of platinum wire. The second
order part is

5.8 × 10−7(150)2) = 1.305Ω

R(150) = 100(1 + 39.08 × 10−4(150) − 1.305 = 159.925

R(1) = 100(1 + 39.08 × 10−4(1) − (somethingreallytiny)) = 0.3908Ω

1 degree change in temperature leads to 0.3908 Ohms change in resistance,
so a 1.305 Ohm resistance change is equivalent to a 3.34 degree chaneg in
temp.

3 Question 3

3.1 Problem

Consider heating a copper rod. Its resistance, length and cross-sectional area
change. If the temperature changes by 1 degree C, what percentage changes
in R, L and A occur? What conclusions do you draw?

Data:
The change in dimension with temperature is given by the linear coeff of
thermal expansion of Cu, confusingly also called α, and with the same
units!.αCu = 1.7 × 10−5K−1

3.2 Solution

We have two effects that will change the resistance of a bar of metal- one is
the increase in restivity that arises from the increased number of collisions
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between the ’gas’ of conduction electrons as the temperature increases. This
is dependant only on temperature, and not on the dimensions of the wire.
The second effect is the increase in the resistance of the wire because of the
thermal expansion of the metal. Even if the restivity of the metal didn’t
change with temperature, the resistance would. The point of this problem is
to calculate the two effects seperately and compare them.

let us say the rod has dimensions length c, height b, width a. The cross-
sectional area is then ab. When the rod is heated, it expands in each dimen-
sion by an amount proportional to the length, ie:

ahot = acold + ∆acold = acold + α∆Tacold = (1 + α∆T )acold

similarly,
bhot = (1 + α∆T )bcold

chot = (1 + α∆T )ccold

and so

Rhot = ρ
chot

ahotbhot

= ρ
(1 + α∆T )ccold

(1 + α∆T )acold(1 + α∆T )bcold

= Rcold

1

1 + α∆T

Now the percentage changes in R, L and A can be calculated, noting that
∆T = 1:

Lhot = Lcold + ∆Lcold

= Lcold + α∆TLcold

= (1 + α)Lcold

percentage change in L is

∆L

L
= α = 1.7 × 10−3%
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Ahot = Acold + ∆Acold

= (a + ∆a)(b + ∆b)

= a(1 + α)b(1 + α)

= A(1 + α)2

∆A

A
= ((1 + α)2

− 1) ∼ 2α

Note that this can be simplified by neglecting the α2 term in the expan-
sion. By a similar process,

∆R

R
= (1 − (1 + α)2) ∼ −2α

If we compare 1.7× 10−3% with the change in resistance due to restivity
from above (0.3908/160=0.24%) we see that the change in resistance from
the dimensional change alone is negligible when compared with the change
due to the change in restivity.

4 Question 4

4.1 Problem

A thin Film strain Gague (of film thickness 250 µm, containing a 78 mm
long Constantan wire) is bonded to a 1x1 m square concreete support for a
highway bridge. If the resistance of the sensor increases by 20%, what weight
is bearing down on the column?

4.2 Solution

The most sane way to tackle this problem is to make a few simplifying as-
sumptions. Let us say that the concrete will squish up by an amount dictated
by its young’s Modulous, and that this will in turn squish the wire, reducing
its cross-sectional area. Let us simplify the calculation by assuming that the
length of the wire will not change, and that all the change in resistance is
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due to the wire becoming thinner. Let us assume even more, and say that
the resistivity will not change as a result of the compression.

Under these assumptions, all we really need is the Young’s modulus and
the percentage reduction in resistance.

R = 4ρL

πx2 )

R = (constantswemayaswellignorebecausetheywillcancelinafewsteps)
1

x2

∆R =
1

(x + ∆x)2
−

1

x2

= (rearrange, expandandthrowawaysecondorderterms)

∆R

R
=

−2∆x

x + 2∆x
= 0.2(weknowresistancedropsby20percent)

This gives us

∆x

x
= 0.083 =

mg

Y

and we find mg easily.

5 Question 5

5.1 Problem

A 1 mm thick piezoelectric sensor with an area of 1x1 cm develops a voltage
of 1.6 kV. If the sensor is made of PVDF, what weight is being applied to the
sensor? What voltage would it generate if the sensor was made of BaT iO3?

Data:

εBaTiO3

r = 1700

εPV DF
r = 12

dBaTiO3

11
= 78pC/N

dPV DF
11

= −30pC/N
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5.2 Solution

The piezoelectric effect generates a charge on some of the faces of a crystal,
usually a pair of opposite sides. Sometimes the charged surfaces are the ones
to which the force is being applied; other times it is a differnt pair of faces.
The subscripts n and m on the dnm tell us which faces develop the charge,
but in these simple problems we don’t care. The charge generated is

Q = d11F

we relate the charge generated to the voltage generated by the good ’ol
capacitor equation for a slab:

Q = CV

and

C =
εA

d

combine to get (noting that d is the thickness and d11 is the piezo constant):

V = Q/C

=
d11Fd

εA

Plug in V and solve for F to get

F = 0.563N

plug back in and use the constants for BaT iO3 to get

V = 29.3V

6 Question 6

6.1 Problem

A 1 mm thick BaT iO3 pyroelectric sensor is subject to a 50 K temperature
change. What voltage does is generate? If the same voltage was generated
from a PVDF sensor of the same dimensions, what temperature change would
that represent?
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Data:

εBaTiO3

r = 1700

εPV DF
r = 12

P BaTiO3

Q = 4 × 10−4C.m−2K−1

P PV DF
Q = 4 × 10−3C.m−2K−1

6.2 Solution

There is quite a bit of ambiguity in the literature about the proper formula
to use-but the best way forward is to use dimensional analysis and a bit of
nous. PQ has units of C.m−2K−1, so it tells us how many coulombs of charge
are generated on every square metre of the surface of the pyroelectric slab
perdegree rise in temperature. Hence,

Q = PQA∆T

we relate the charge generated to the voltage generated by the good ’ol
capacitor equation for a slab:

Q = CV

and

C =
εA

d

combine to get

V = Q/c

=
dPQA∆T

εA

=
dPQ∆T

ε

=
(.001)(.0004)(50)

(8.8 × 10−12)(1700)

= 1336V olts
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which is a heck of a lot! Going backwards for the second part of the
problem:

1336 =
dPQ∆T

ε
= (.001)(.0004)(∆T )(8.8× 10−12)(12)

∆T = 3.53K

7 Question 7

7.1 Problem

7.2 Solution

=

=

=
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