

Before Relativity

- How fast are we going?
 - Relative to surface of Earth?
 - Relative to the Sun?
 - …..centre of Galaxy?
 -origin of Big Bang?
- Can't use ordinary Mechanics to test this!
- What about electromagnetism?
- Can we use properties of light?

How does light behave?

- Light is an electromagnetic wave
- So experiments with light might allow us to detect our absolute speed through the cosmos!
- So how does light behave? Possible Answers:
- Like Tennis Balls?
- Like Sound Waves?
- Like Something Else?

3	Kinetic Energy of Relativistic Spacecraft					
	Speed (v/c)	$\gamma = 1/(1-v^2/c^2)^{1/2}$	Kinetic En	ergy		
Coi US Wo	Compare: USA annual electric power (1982) 8.5x10 ¹⁸ J World annual electric power (1982) 3.1x10 ¹⁹ J					
301	0.1	1.005	4.5x10 ¹⁴			
	0.5	1.15	1.4x10 ¹⁶			
	0.8	1.67	6.0x10 ¹⁶			
	0.9	2.29	1.2x10 ¹⁷ 30 in	Gev electron a storage ring		
	0.99	7.1	5.5x10 ¹⁷	at CERN		
	0.9999999986	60,000	5.4x10 ²¹			

🕵 General Relativity

- " … remained, for forty years after its discovery (by Einstein), an austere intellectual monument a somewhat sterile topic isolated from the mainstream of physics and astronomy - whose practitioners were 'magnificent cultural ornaments'
- In the late 20thC, GR is an engineering subject!

Equivalence Principle

- Inertial mass: F = m_ia
- Gravitational mass: $F = GMm_{q}/r^{2}$
- Newton knew $m_i = m_g$
- ■Why?

Radius, r Measured Circumfrence, C C/r 10 cm 62.8 cm 6.28 50 cm 314.2 cm 6.28 100 cm 628.0 cm 6.28 50 m 314.2 m 6.28 10,000 km 40,0000 km 4.00	Experimental test of $C=2\pi r$					
10 cm 62.8 cm 6.28 50 cm 314.2 cm 6.28 100 cm 628.0 cm 6.28 50 m 314.2 m 6.28 10,000 km 40,0000 km 4.00 Why?	Radius, r	Measured Circumfrence, C	C/r			
50 cm 314.2 cm 6.28 Yikes!! 100 cm 628.0 cm 6.28 C<2πr	10 cm	62.8 cm	6.28			
100 cm 628.0 cm 6.28 Yikes!! 50 m 314.2 m 6.28 C<2πr	50 cm	314.2 cm	6.28			
50 m 314.2 m 6.28 C<2πr 10,000 km 40,0000 km 4.00 Why?	100 cm	628.0 cm	6.28 Yikes!!			
10,000 km 40,0000 km 4.00 Why?	50 m	314.2 m	6.28 C<2πr			
	10,000 km	40,0000 km	4.00 Why??			

