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'''' d New beads on the abacus
By Assoc. Prof. David N. Jamieson, PhD, FAIP
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Classical Physics
« Everyday experience
« Big objects we can look at

« Everything is smooth, continuous and sharp /A ﬁ
* The scale of humans

Quantum Physics

¢ Only in the last 100 years

« Objects as small as molecules, atoms and below
« Everything is indivisably packaged

¢ Things are blurry, move in jumps ®
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“CIassical computing: Moore’s Law
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é The end of Moore’s law
100000

The remarkable development of computers
» Gordon Moore:
— in 1965 was Director of Fairchild Semiconductor %

— made a 32 transistor integrated circuit one year %

— 64 the next

* “The number of transistors (and hence computer powe%
doubles every 18 months to two years”

« (Now making one transistor per ant per year - 1017 ants on Earth) %

} Motorola Power PC 620 Chip
. 7 million transistors
(ancient relic)
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Ancient relics
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(Turn on sound)

The end of Moore’s Law!
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« As electronic devices shrink, soon there will be just a few
electr(_)ns in each device _ Large device, current is
 Electric currents become erratic! average of many
electrons
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Classical Computers

Factorizing Large Numbers

Prospects for the future

» Cannot get indefinite speed increases by indefinite
miniaturisation

than one computer chip working together)
computers

» One class of these problems involves the factoring of
large numbers into prime factors

Centre for Te

« Can get some advantages from parallel processors (more

* BUT: Some problems will always be difficult for classical

« Essential for security of transactions over the internet
(“RSA security”), etc

* Example:
— 127 x 129 = ? Easy! A few minutes
— ? X ?=29083 Hard! Maybe an hour

— “hardness” of factorizing large numbers is the key to internet
security

« Best supercomputers today can manage a 140 digit
number

* What about a 500 digit number? - Forget it!

REMEMBER: Fundamentally, we do not live in a classical world!
Enter the Quantum Computer
=
ity
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The Quantum Computer

The Quantum Computer

What can a quantum computer do?

» Quantum computers do the factorization problem 108
times faster than conventional computers

» Searching through long lists

* Quantum encryption for secure information exchange

» Solving chemical and biological structures

* Modelling the real (quantum) world

* How is this done?

Centre for Te

Use quantum particles as the bits in a quantum computer!
« Conventional computer memory states:

@@@@ E binary bits

+ Quantum computer memory states:

[ol[o][o][o][of[a][a][o]a][a] [..] binary quobits

— A quantum computer memory can occupy all possible states at the
one time

— The solution to the problem appears in the final state of the
computer when the state of the qubits are read out
— What can we use as qubits?
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» Occupying two states simultaneously
« Entanglement
* “Spooky action at a distance™

*A. Einstein
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Essential Quantum Mechanics The Classical World
We need to get a feel for these non-classical attributes: ) )
 The art of being in two places at the one time Barrier Screen
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The Classical World

The Quantum World

The Quantum World

Barrier Screen Barrier Screen
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The Quantum World
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Barrier

Blocking one
hole gives the
classical result
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The Quantum World

The Quantum World

Barrier

me
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Screen

“Wavefunction
collapse”

Entanglement

.

First Result

Can probe for holes in a screen with a large number of
classical particles (one particle for each point on the
screen)

Can probe for holes in a screen with one quantum
particle!

The “wave function” collapses to a particle when
measured

Quantum objects can do many things at once
But there is more: Entanglement
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Entanglement
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Entanglement

Entanglement
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Entanglement
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The Quantum World

Magnetic Resonance

Second Result

Quantum objects can exist in two superimposed
(entangled) states

This superimposed state can collapse into a definite state
upon measurement

Entangled particles can be created that retain the
superimposed state until measurement

But how do we use this for quantum computing?

Sub-atomic particles spin! Look at the proton:

« A spinning charged particle acts like a tiny loop of electric
current

e This produces a magnetic field
* So the spinning particle is like a tiny bar magnet

X i%:iA@
R oY
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Magnetic Resonance

Magnetic Resonance

Magnetic moments

* The strength of the equivalent magnet depends of the
“speed” of the spin and the “size” of the particle

* This is measured by the dipole moment, p K

Some examples:

2

Particle Dipole moment, p
(Joule/Tesla)
Small Bar Magnet 5
Earth 8 x10
Proton 1.4 x107%°
Neutron (1/2.8)proton
¥ e Electron 9.3 x 1072* = 660proton
E Centre for Te
T

Spinning charged particles can be lined up with an external
magnetic field

Alignment force vectors

=

= i
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Magnetic Resonacce

Magnetic Resonance

Space Quantisation

» Like many other properties, space itself is
quantised

* The spinning patrticles cannot have
arbitrary orientations in space relative to
the external magnetic field

* The allowed orientations depend on the
amount of spin

» For protons and electrons, there are only
two allowed orientations

« (This is a spin-half particle)

Centre for Te

Spinning subatomic particles are quantum patrticles
« The spin orientation are two different quantum states

« Before measurement, the spin orientation can be in two
(spin 1/2) directions at the same time - superimposed
states

« Upon measurement, the spin is found to point in a definite
direction - wavefunction collapse

¢ Just what we need for a quantum computer!
« To program this computer, we need energy

Centre for 7
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\ M gl}étic Resonance

Orientation and energy

¢ The spin down state is not
equilibrium

¢ The magnetic field twists the spin

Spin up Low vector into alignment
NeT9Y . (Precise alignment is prevented by
High space quantisation)
Spin down . energy
=
*E lentre for Te
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Classical magneg
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Change orientations
* The high energy state will
spontaneously relax back to the low

energy state, releasing ener
Low ay g ay

energy

High
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Magnetic Resonance: Zeeman
Effect

Change orientations

« The high energy state will
spontaneously relax back to the low
energy state, releasing energy

* The low energy state can absorb
energy and flip to the high energy

High state
energy

Low
energy

« Excited mercury vapour emits light owing to electrons jumping up and
down between energy levels

* A magnetic field placed around the vapour splits the energy levels and
causes small changes in the colour of the light

« These changes can be detected with a sensitive spectrometer

« Can also see the effect in sunspots...

E | Spectrometer L_"mlm ch Photograph Ly

Zeeman Effect 9

The Kane Quantum Computer

Assign qubits

Classica
equivalents
Spin up .‘ |1> 1 | 3
"o
1 3
Spin down . [0> 0 (No classical
equivalent!
landO
simultaneously!)
@
m lentre for Te

We are now ready to commence construction:
« “A Silicon-based nuclear spin quantum computer” by B. E.
Kane, Nature, May 14, 1998
« Proposes a device that:
— encodes qubits as the orientation of spinning nuclei
— provides entanglement by means of electron clouds
— is constructed in silicon like conventional computers

« Will use a block of pure 28Si (spin-zero nucleus)
« Will use atoms of phosphorous (3'P) to carry the spins

i
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The Kane Quantum Computer ‘1

The Kane Quantum Computer

 Close-up of a phosphorous atom (not to scale)

Nucleus (spin 1/2)

The spin-orbit
interaction

Inner electron

cloud of
14 electrons
(spin 0)

Snapshot at 2 mK
(-273°C)

2.2

Outer electron
cloud (spin 1/2)

2 Tesla
magnetic field

J-Gates
( A-Gjtes#\ \
» » | J

Barrier
Si
2 mK [1> |0> Substrate
operating
temperature . ~200 A

Centre for
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The Kane Quantum Computer
Adjust spin-

The Kane Quantum Computer

orbit couplingJ “exchange coupling” mediated by J-Gates entangles spins
2 Tesla J-Gates 2 Tesla
magratiafiald magnetic field
Apply 74\ \
radio frequency - - P A e -
pulse + Barrier Barrier
Si Si
2mK Substrate 2 mK Substrate
operating operating
temperature na temperature ~200 A
H @ VV’/.\‘ :‘u @
— Centre for Te —ir Centre for
L L

The Kane Quantum Computer

SPIN READOUT

Operating sequence summary: s e S
at _ =557
« Initialise nuclear spins by means et  iEm—

of A-Gates and NMR pulses

« Commence “computation” by
entangling nuclear spins through
J-Gates and spin-orbit coupling

« Read final state of spins by
means of a single electron
transistor

« Final state is the equivalent to the
diffraction pattern in the two slit

experiment

@
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¢ Summary

Electron Spins

Nuclear Spins

Centre for

Fabrication Pathways

(1) Nano-scale Lithography

Who is going to make this?
We are!

« Semiconductor National Nanofabrication (SNF) Laboratory, School of
Physics, University of New South Wales

* Microanalytical Research Centre, School of Physics, University of
Melbourne

« Laser Physics Centre, Department of Physics, University of Queensland
+ Los Alamos National Laboratories, U.S.A.

Fabrication strategies:

¢ (1) Nano-scale lithography:

* (2) Direct 3P ion implantation

¥ge

T i

Centre for Te

I I I Step 5: Deposit metal contacts
Step 4: Deposit oxide layer

Step 3: Overgrowth by more silicon

Step 2: Deposit single 3'P atoms
Step 1: Clean, flat silicon surface

Centre for
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(1) Nano-scale Lithography

(1) Nano-scale Lithography

« Electron beam lithography at the University of New South « Scanning Tunneling Microscope with silicon crystal growth
Wales capabilities at the UNSW

* 25K -1500K Variable T
* 3-Chamber UHV
« Plus: Si-MBE, RHEED, LEED, Auger

. .
Image of individual atoms on
silicon surface

Sub-300A AuPd gates on GaAs

-
Centre for T

Centre for 7
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(2) Alternative Fabrication Pathway j= (2) Direct 1P ion implantation

Difficulties: Electron irradiation lon irradiation

* Must place 3P to a precision of a few billionths of a metre 30 keV e~ 60 keV e~ 2 MeV He*

« Having done that, need to come back and add metal
electrodes on the buried 3!P atoms for the gates

« The 3P must not move about while doing this

An alternative strategy:

« Direct 3P ion implantation

« Can create templates for electrodes automatically

Centre for 7

= -
Centre for T

(2) Direct 3P ion implantation (2) Direct 3'P ion implantation
Etch latent damage Read-out state of
! ; MeV 3P implant & “qubits”
* Single MeV heavy ions metallise
produce latent damage
« Etching in NaOH devel Resist layer
damage to produce pit:
Li htg P d P i Oxide layer i ¢ i
¢ Lightions produce sme
iy | TR 00D
I = Si substrate 1>, |1>, [0>
The plastic helmet used by astronaut James Loveil during the Apollo 3 ‘mission and
1. Irradiate 20LBUONL (I The et ave about ove o o an e o e ol
damage Scale bars: 1 um intervals
_ﬁ_ From: B.E. Fischer, Nucl. Instr. Meth. B54 (1991) 401. _ﬁ_
E Centre for T E Centre for 7
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Key Technologies; Imaging a single I

interstitial P atom = Conclusion: Quantum Computer

« Superposition and entanglement enables massive parallel

rocessin
"olle ol o]l [-] binary qubits
e (L qubits can store 2- numbers at once, classical only 1)
« Shor’s prime factorization algorithm (1994) relevant to
cryptography
« Grover's exhaustive search algorithm (1996)

Quantum

Classical Computers Factoring
Computers Quantum Physics Problems

Exhaustive Search

All Problems

-
Centre for Te
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Further Reading

« Australian Centre for Quantum Computer Technology
http://ww. ph. uni mel b. edu. au/ ~dnj / sr ¢/ srchone. ht m

« Oxford quantum computer group htt p: // ww. qubi t. or g
* The Feynman Processor, G. Milburn, Allen & Unwin, 1998
* Quantum Technology, G. Milburn, Allen & Unwin, 1996

* The Large, the Small and the Human Mind, R. Penrose, Cambridge,
1997

* Quantum Teleportation, A. Zeilinger, Scientific American, April 2000

* Physics and the Information Revolution, J. Birnbaum, R.S. Williams,
Physics Today, January 2000
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