

Special Relativity: Summary

- Laws of Physics are the same for everybody
 - Therefore cannot measure an absolute velocity
- Speed of light is the same for everybody
 - Time dilation
 - Lorentz contraction
 - Mass increase
- Speed of light is the maximum possible speed
 - Duration of intensity fluctuations provide upper limit on physical size
- Relativistic Doppler shift
 - Red-shift for receding objects
 - Blue shift for approaching objects

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

Missing Mass: Dark Matter

- Only about 10% of the mass of our galaxy is visible!
- How do we know this?
- Answer: Stars orbit inside galaxies not like the planets in our solar system!
- They orbit as if they were embedded in a vast solid sphere!
- Why?
- Answer: Dark matter!

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

Missing Mass: Orbit of planets Planets close to the Sun must orbit fast Suppose the Sun must orbit fast Orbit Radius (A.U.)

Missing Mass: Orbits of stars in galaxies

- In a galaxy, most of stars are in the central bulge
- Therefore expect rotation curve to be similar to that of the solar system, particularly for stars in spiral arms
- Don't see that!

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

