

Apply equivalence principle

- Conclusion:
- Space is curved (into higher dimensions) by gravity
- How can this effect be tested?
- By drawing circles?
- To difficult!
- Use path of light instead
- Arthur Eddington sent to south seas in 1920 to observe eclipse of the Sun
- Confirmed that the Sun's gravity curves space
- Einstein cannonised!

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

Examples of Curved Space

- Space around the Sun
 - Starlight during solar eclipse
 - Radar echo from Venus
 - Radio signals from distant space craft
- Advance in the perihelion of Mercury
- Black Holes
- Gravitational Wave Astronomy

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

Curved space: Gravity of Sun Step 1: Observe stars at night, measure separation Step 2: Observe stars during exlipse with Sun between, measure separation

Summary of Problems for the GPS

- 1. GPS satellites clocks run slow by 6 millionths of a second per day (SR time dilation)
- 2. Cannot synchronise by exchange of signals
- 3. GPS satellite clocks run fast by 45 millionths of a second per day (GR gravitational blue shift)
- Net effect: Run fast by 39 millionths of a second per day (=error of 12 kilometres)!
- SOLUTION: Make the clocks run slow to compensate!

© Assoc Prof D.N. Jamieson and Dr.R.F. Scholten 199

Curved Space: Massive Objects

- Gravity Revision
- Massive objects
 - What determines their size?
- Black holes and the event horizon
- Gravitational red shift
- Detecting black holes

Assoc Prof D.N. Jamieson and Dr.R.E. Scholten 1996

Applications

- Global positioning system
 - Satellite clocks run fast by 45 μs/day
- Black Holes

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

Black Holes: Summary ■ No force can prevent gravitational collapse of an object greater than about 3 solar masses ■ Object will collapse to a "singularity" (infinitely small) ■ Gravity is very strong near the singularity, but otherwise unchanged by the collapse ■ Gravity causes light to orbit at the radius of the photosphere Horizon is ■ At the radius of the "event horizon": point where lines - Volume of space goes to infinity become - Clocks stop vertical - Redshift goes to infinity Radius of event horizon is 2GM/c² "The Schwatzchild © Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

Size of Event Horizon

Object

Event Horizon Radius*

■ Asteroid

 $10^{-15}\,$ m (diam of nucleus)

■ Earth

1 cm 3 km s 300,000 km

■ Globular Cluster (10⁵) stars ■ Entire Galaxy

10¹² km

*Size object would have to be compressed to become a black hole

r R.E. Scholten 1999

Predictions of General Relativity

- Gravitational red shift
 - Tested on Earth with the Mössbauer effect over a 20m tall tower
- Bending of starlight by the Sun
 - Tested by obervations of stars during a solar eclipse
- Advance in the perihelion of Mercury
 - Tested by observation
- Gravity waves
 - Tested by observations of pulsars in binary systems
 - Other experiments soon to come on line
- Many others
- Status: All ok!

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

References

- Gravity's fatal attraction Black holes and the universe, M. Begelman and M. Rees, Scientific Amercian Library, 1996, Freeman
- *Gravity and spacetime*, J.A. Wheeler, Scientific Amercian Library, 1990, Freeman.
- Scouting black holes: Exploring general relativity with calculus, E.F. Taylor & J.A. Wheeler, Freeman, 1995

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999