

The contribution of Einstein

- Time, space and gravity
- The theory of Special Relativity
 - for fast objects
 - for constant velocity
- The theory of General Relativity
 - for high objects
 - for accelerated objects

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

Two important questions

- 1. Can we use mechanics to measure the "absolute speed" of the Earth (or any other |aboratory)?
 - Newton showed we can't do this with mechanics
 - Magnetism is a velocity dependent force, can we use it?
 - Answer: No!
- 2. How does light behave?
 - Like tennis balls?
 - Like sound waves?
 - Like something else!
- Require both the Special Theory of Relativity and the General Theory of Relativity
 - Special theory Einstein in 1905
 - General theory Einstein in 1915

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

Light as an electromagnetic wave

- Ways to produce electromagnetic radiation
 - Electrons oscillating back and forth
 - Electrons dropping energy levels in atoms
 - Rearrangements of the nucleus of an atom
 - Annihilation of matter with anti-matter
- (Listed here in order of increasing energy)
- Distance light travels in one year is called "The light year"
- 1 light year = 1 year of time x C
 - = $9.5 \times 10^{15} \text{ m}$ (ten thousand billion km)
- Why is light so slow?
- Why is the universe so big?

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

To begin

- Need to study how objects move
- From this can develop laws of mechanics
- Need to study how light behaves
- Is this consistent with the laws of mechanics?
- **■** (No)

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

Before Relativity

- Galileo (and Newton) knew that an object, once set in motion, continues indefinitely at constant speed unless acted upon by an external force.
- Cannot detect this motion from "inside"

Twice the speed of sound and not a drop spilled!

...or parked at the gate?

Lifestyle of a Concorde passenger

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

But electromagnetism (and light) may be different

- Cannot use ordinary mechanics to detect our speed through the cosmos
- Electrostatic force: $F = kQq/r^2$

■ Magnetic force: F = qvB

| Deflecting force, F | N | S | Velocity, v

...magnetic force depends on the speed, v !

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

Conclusions

- Moving clocks run slow!
- Light path for one "tick" in the light clock is longer than for one "tick" in the stationary clock
- Speed of light is the same
- Stationary clock sees moving clock ticking slower
- Works for ALL clocks.

© Assoc Prof D.N. Jamieson and Dr R.E. Scholten 1999

The Main Events

- 1. Time Dilation
- 2. Lorentz Contraction
- 3. Relativity of Simultaneity

© Assoc Prof D.N. Jamieson and Dr.R.E. Scholten 19

Moving clocks run slow: Experimental Test

- Many experimental tests available!
- Will look at only one case study
- Short lived radioactive particles are created by cosmic ray bombardment of the Earth's atmosphere
- These can be detected (see our third year physics lab)

© Assoc Prof D.N. Jamieson and Dr.R.E. Scholten 1999

Cosmic Rays 300 44 250 50 10 20 30 40 50 60 70 80 90 Time (minutes) © Assoc Prof D.N. Jamieson and Dr R.E. Scholen 1999

