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Abstract-A new model is proposed for the analy- 
sis of CDMA systems. This model is a birth and death 
process whose birth process considers the new call ar- 
rival rate, the blocking rate, the effect of soft handoff 
and the effect of the hand allocation strategy in multi- 
band (multicarrier) CDMA systems. This model accu- 
rately predicts the distribution of the number of calls 
connected to a base station. 

I. INTRODUCTION 

Code division multiple access (CDMA) systems 
are characterised by “soft blocking”. New calls are 
blocked when the total same cell plus other cell in- 
terference is too high. Thus they can neither be con- 
sidered to he finite queues, which accept arrivals nn- 
til a fixed threshold is reached, or infinite queues, 
which never block arrivals. The traditional M/M/cc 
queue model [l] does not reflect this soft blocking 
behaviour of a CDMA system. This paper develops 
an alternative model, in which each cell blocks newly 
arriving calls with a state-dependent probability. In 
its simplest form this model is similar to that used 
(but not directly evaluated) in [2 ] .  

This model treats each cell of a multi-cell system 
independently. The state of the cell is the number 
of users currently in that cell. Other cells simply 
contribute random interference. This random inter- 
ference causes blocking with some probability, &, 
which is assumed to depend only on the state z of the 
current cell. 

The state of the cell can be modelled as a birth 
and death process [3]. Deaths (call departures) have 
negative exponential inter-event times with rate pro- 
portional to the current number of calls. Births also 
have a negative exponential inter-event time, with 
rate equal to the arrival rate thinned by the blocking 
probability, X ( l  - Bi). 

In this paper, Bi are determined by simulation. 
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The question arises “if Bi are from simulation, why 
model the system?’ Modelling each cell as indepen- 
dent, and treating all other cells as an independent 
random process is an approximation. If the simula- 
tion results agree with the Markov model, this vali- 
dates that approximation. In future, closed form ex- 
pressions for the Bis will he determined, and a fully 
analytic solution will he available. 

11. HARD HANDOFF 

When hard handoff is used, new calls are allo- 
cated to the nearest base station. This gives rise to 
the very simple birth and death process with the ar- 
rival rate to state i being X ( l  - Bi), and the depar- 
ture rate ip, shown in Figure 1. Call this Markov 
chain “Markov chain A”. Figure 2 shows the proha- 
hility distribution for the state of a cell according to 
an event driven simulation of the system and the state 
distribution of Markov chain A. For comparison, it 
also shows the distribution for an M/M/cc model. 
Clearly the proposed model gives a much better fit 
than the traditional model. This simulation was for a 
4 x 4 hexagonal grid with a spreading factor of 128, 
and calls accepted if the signal to interference ratio 
(SIR) exceeds 6 dB. Log-normal shadowing was as- 
sumed, with standard deviation U = 8 dB, but mul- 
tipath fading was ignored. The load was 14 Erlangs. 
The overall blocking probability was 12.7%, both 
by simulation and the Markov A model. (Note that 
very high blocking probabilities are used through- 
out this paper to highlight the difference in the mod- 
els.) When the blocking probability is low, it may 
he approximated by the probability that the number 
of calls exceeds a maximum permissible value in an 
M/M/oo model. The permissible value typically used 
is W / a  - 1 - (1 ~ B ) f X / p ,  where W is the pro- 
cessing gain, 01 is the required SIR, B is the over- 
all blocking probability, f is the ratio of same-cell 
to other-cell interference in a uniformly loaded sys- 
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Fig. 2. State distribution for hard handoff: simulated, 
proposed Markov model and W o o  model. 

tem, and A/p  is the load on the system. Since the 
threshold depends on the blocking probability, an it- 
erative solution is required (although in many cases 
the approximation B N 0 suffices). For hard handoff, 
f Y 2.5, and in this case the blocking probability is 
approximately 50%, the probability of exceeding ap- 
proximately 14 calls. Clearly the approximation that 
the distribution is approximately that of an M/M/cc 
queue is not valid in this case, and thus the result is 
substantially different from the true value and is of 
no use in network planning. 

Figure 3 shows the blocking probability in each 
state for the above simulation. As expected, the 
blocking probability is greater for heavily loaded 
cells than for cells with a moderate load. A more 
unexpected result is that blocking is also higher for 
very lightly loaded cells. This is because of the cor- 
relation in blocking events. If the other-cell interfer- 
ence i s  high when a call arrives, it will probably also 
be high when the next call arrives. Thus when the 
other-cell interference is high for a prolonged period, 
the occupancy of the cell will drop as users leave 
but no new users are admitted. While it is surpris- 
ing that blocking is high when the number of calls in 
a cell is low, the converse (that the number of calls 
in a cell is low when the blocking is high) is intu- 
itively obvious. To verify this explanation, the figure 
also shows the blocking per state for soft handoff. 
(The load was increased to obtain per-state blocking 
of the same order of magnitude as for hard handoff, 
although the overall blocking was not matched.) In 

soft handoff, the other cell interference is greatly re- 
duced since users are decoded by the base station at 
which they have the highest SIR. Hence the total in- 
terference will drop more markedly as the cell emp- 
ties than is the case for hard handoff, and prolonged 
periods of high interference are less common. This 
phenomenon is not captured by the statistical models 
used in [2] and elsewhere. 

111. SOFT HANDOFF 

In soft handoff, a mobile connects simultaneously 
to several base stations, and is decoded by the base 
station with the highest SIR. This greatly improves 
system capacity. The state of a cell is then the num- 
ber of users which are currently being decoded by 
that cell. Applying the blocking probabilities mea- 
sured for soft handoff to Markov chain A gives a very 
poor fit to the soft handoff simulation. This can be 
seen in Figure 4, which shows the results for a load of 
20 Erlangs. The overall blocking rate is 7.3%, which 
is the same order of magnitude as the simulated value 
of 5.6%. but that is largely due to the cancellation 
of the overestimate of blocking due to very heavily 
loaded cells by the underestimate of blocking due to 
moderately loaded cells. 

Soft handoff produces a distribution with more 
cells having approximately the average number of 
calls than hard handoff. That is because calls will 
typically have a higher SIR in more lightly loaded 
cells, and thus will be more likely to connect to the 
corresponding base stations, leading to a higher ef- 
fective arrival rate at base stations with fewer calls. 
This can he modelled by making the anival rate de- 
pend on the current state of the cell. A suitable and 
effective heuristic for this amval rate will now he 
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outlined. 
For this purpose it is reasonable to make the ap- 

proximation that all of the neighbouring cells have 
an equal number of users n. Initially it will be as- 
sumed that n = A / p .  It is also reasonable to assume 
that the effective arrival rate will be proportional to 
the true arrival rate, and so the effective amval rate 
in state i will be ki,,X( 1 - Bi). Similarly, ki,, should 
not change when the entire load on the system scales 
uniformly, so it will depend on i and n only through 
the ratio i/n. When i /n 1, the system is uniformly 
loaded, and the arrival rate at all cells will simply be 
the true amval rate, yielding IC,, ,  % 1. For i / n  >> 1, 
IC,,, will be almost zero, since most users will con- 
nect to neighbouring base stations, rather than the 
base station of interest. Finally, for i /n << 1, IC,, ,  
will be around 2, since the base station will get all of 
the calls in its own cell, and those calls in the neigh- 
bouring cells for which the base station of interest is 
the second nearest. One functional form that meets 
these requirements is 2/(1 + (i/n)”) for a > 0. Em- 
pirically it has been found that this provides a good 
fit with a = 4. Figure 5 shows this scaling factor 
against i/n, the occupancy of the current cell rela- 
tive to the mean load. Thus the overall amval rate 
is 

in state i .  Call this modified Markov chain “Markov 
chain B”. Once an estimate of the overall block- 
ing probability, B, is known, the Markov chain can 
be improved by approximating the occupancy of 
neighbouring cells as n N (X/k)(l - B) ,  yielding 
“Markov chain B with two iterations”. This may 
he repeated until the blocking probability converges. 
The results for soft handoff with a load of 20 Er- 
langs are shown in Figure 4. After one iteration, 
Markov chain B produced a much better approxima- 
tion to the true state distribution than Markov chain 
A. However, it slightly overestimated the number of 
calls in the cell (that is, the mean of the distribution 
was shifted to the right), and it predicted an overall 
blocking rate of 7.4%, which is very similar to that 
of Markov chain A, but substantially different from 
the true value of 5.6% obtained by simulation. After 
a second iteration, the model produced a very good 
approximation to the simulated state distribution, and 
predicted a blocking probability of 5.4%. For com- 
parison, the results with no blocking are included. 

The fact that results from Markov chain B match 
the simulated curve well but those from Markov 
chain A do not shows that the good match is not “in- 
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Fig. 4. State distribution for soft handoff: Simulated, 
original Markov chain, modified Markov chain. 
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Fig. 5.  Scaling factor applied to arrival rate, as a function 
of iln. 

evitable” given the per-state blocking probabilities, 
but rather that the choice of Markov chain is respon- 
sible for the good match. 

Note that it was not necessary to alter the anival 
rates in this way for soft handoff in [2]. That is be- 
cause base station selection there was based on the 
measured path gain, rather than the SIR. Thus the 
base station to which a new call connected depended 
only on the propagation conditions and was indepen- 
dent of the load on the cell, causing the arrival rate 
(before blocking) to be indpendent of the state. 

Iv. MULTI-BAND OPERATION 

The capacity of a CDMA system may be easily in- 
creased using multi-band (or multi-channel) CDMA, 
in which a second slice of spectrum is used, and calls 
are allocated to one or other band [MI. The perfor- 
mance of such systems is influenced by the way new 
calls are allocated to bands, and this difference in 
performance can be predicted by the proposed tech- 
nique. The Markov chain will now be two dimen- 
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sional (or N dimensional for N bands). For simplic- 
ity, this paper will only treat the case of hard handoff. 

One obvious strategy is to assign a call to a band 
randomly. If the call is blocked in the chosen band, it 
is tried in the next band. This gives rise to the Markov 
chain of Figure 6, where X i j  is the arrival rate to the 
band in state j from either state (i,j) or (j,i). The 
rate of arrivals to band k from a given state is the 
overall arrival rate (= A) times the probability of ini- 
tially selecting band k (= 1/2), times the probability 
of not being blocked on band k given that band k is in 
state j (= 1 - Bj), plus the overall arrival rate times 
the probability of initially selecting the other band 
(= 1/2), but being blocked on that band (= Bi) and 
not being blocked on band k (= 1 - Bj). Thus X i j  = 

By symmetry, this collapses to the chain of Figure 7, 
but now with Xi; doubled to X ( l  - B:). That is be- 
cause here the probability of being in state ( i ,  i )  is 
the probability of having i calls in each of the two 
bands, while the probability of being in state ( i , j ) ,  
j # i ,  is the probability of either having i calls in 
the first hand and j in the second, or having j calls in 
the first band and i in the second. Note that this does 
not require knowledge of the blocking probability for 
each state, but only the marginal blocking probability 
given there are i calls in a particular band. 

Another strategy which has proven successful is 
to assign new calls to the band which currently has 
the fewest calls [ 5 ] ,  with blocked calls again trying 
the other band. This can again be represented by the 
collapsed Markov chain of Figure 7, but now with 
Xi j  = X ( 1  - Bj) if i > j ,  X i j  = X B i ( 1  - Bj)  

(x/2)((1-B,)+Bi(l-B,)) = X(l-Bj)(l+BJ/2. 

Fig. 7. Collapsed Markov chain for two band system 

if i < j ,  and Xi i  = X ( l  - B:). This “least load” 
(‘‘LC’) strategy has been analysed thoroughly under 
the assumption of no blocking [6]. 

Figures 8 and 9 show the actual (i.e., simulated) 
and Markov state distributions for each of the two 
strategies, along with the M/M/cc results for compar- 
ison. The spreading factor was halved to 64, so that 
the same total bandwidth was used as for the single 
band case, and the offered load was 17 Erlangs. For 
simplicity, the graph shows the marginal probability 
of having i calls in the first band, rather than the full 
distribution. Clearly there is very good agreement 
between the model and simulation. Least load allo- 
cation shows a more peaked distribution, while ran- 
dom allocation shows a heavier tail, with more cells 
having a large number of calls. This behaviour is 
captured well by the proposed Markov model. 

The blocking probabilities for the simulated (re- 
spectively Markov) cases were 16.1% (15.6%) for 
least load, and 16.6% (13.4%) for random. The fig- 
ures for the Markov model are an approximation, 
given by the square of the marginal per-band block- 
ing probability. This is a fair approximation because 
a call must be rejected on both bands to be blocked. 

To show once again that the good agreement with 
simulation is not solely due to the use of accurate 
per-state blocking probabilities, Figures 10 and 11 
show the Markov distribution for each strategy us- 
ing the per-state blocking probabilities from the other 
strategy. Each graph shows the two sets of simula- 
tion results and the results using one of the Markov 
chains with both sets of measured blocking probabil- 
ities. In each case, the predicted results match the 
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Fig. 9. Simulated vs. Markov and M/M/m results for 
least load band allocation strategy. 

simulation to which the Markov model corresponds 
more closely than the one from which the per-state 
blocking probabilities were taken. This confirms that 
the model is not overly sensitive to the exact per-state 
blocking probabilities. Thus this model can be used 
to predict the overall blocking probability for differ- 
ent band allocation schemes based on the different 
Markov chains and a single set of measured per-state 
blocking probabilities. 

V. CONCLUSION 

It is possible to model soft blocking in multi-cell 
CDMA systems as an independent birth and death 
process at each cell. The birth process is thinned by 
the state-dependent blocking probability. The birth 
process can also be modified to model soft handoff, 
and the process can be extended to analyse multi- 
band systems. 
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Fig. 10. Predicted state distributions for random Markov 
model using least load blocking probabilities. 
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