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Self-consistent analytic and numerical equilibria

D. J. B. Payne� and A. Melatos
School of Physics, University of Melbourne, Parkville, VIC, 3010. Australia

Accepted 2004 March 3. Received 2004 February 23; in original form 2003 April 3

ABSTRACT

The hydromagnetic structure of a neutron star accreting symmetrically at both magnetic poles is
calculated as a function of accreted mass, Ma, and polar cap radius, starting from a centred mag-
netic dipole and evolving through a quasi-static sequence of two-dimensional, Grad–Shafranov
equilibria. The calculation is the first to track fully the growth of high-order magnetic
multipoles, due to equatorward hydromagnetic spreading, while simultaneously preserving
flux-freezing and a self-consistent mass–flux distribution. Equilibria are constructed numeri-
cally by an iterative scheme and analytically by Green functions. Two key results are obtained,
with implications for recycled pulsars. (i) The mass required to reduce significantly the mag-
netic dipole moment, 10−5 M�, greatly exceeds previous estimates (∼10−10 M�), which
ignored the confining stress exerted by the compressed equatorial magnetic field. (ii) Magnetic
bubbles, disconnected from the stellar surface, form in the later stages of accretion (Ma �

10−4 M�).

Key words: accretion, accretion discs – MHD – stars: magnetic fields – stars: neutron –
pulsars: general.

1 I N T RO D U C T I O N

Observations of low-field neutron stars in binary systems containing
white-dwarf and supergiant companions, with a history of disc-
fed and wind-fed accretion, respectively, suggest that the magnetic
dipole moment |m| of a neutron star decreases monotonically with
accreted mass, Ma (Taam & van den Heuvel 1986; van den Heuvel
& Bitzaraki 1995; see Wijers 1997 for a dissenting view). Several
mechanisms have been proposed to explain why |m| is reduced:

(i) accelerated ohmic decay, where the electrical conductivity of
the crust is lowered by accretion-induced heating (Urpin & Geppert
1995; Urpin & Konenkov 1997);

(ii) interactions between superfluid neutron vortices and super-
conducting magnetic fluxoids in the stellar interior (Muslimov &
Tsygan 1985; Srinivasan et al. 1990); and

(iii) magnetic screening or burial, where the currents generat-
ing the natal magnetic field are partially neutralized by accretion-
induced currents in the crust (Arons & Lea 1980; Blondin & Freese
1986).

For a critical review of these mechanisms, see Melatos & Phinney
(2001).

In this paper, we study the mechanism of magnetic burial in detail.
In the early stages of accretion (Ma � 10−10 M�), accreted matter
accumulates in a column at the polar cap, minimally distorting the
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magnetic field. The mass–flux distribution in this regime has been
calculated by Grad–Shafranov methods, with the prediction that
|m| is reduced by ∼1 per cent for Ma ≈ 10−10 M� (Hameury et al.
1983; Brown & Bildsten 1998; Litwin, Brown & Rosner 2001). We
show that these calculations overestimate the amount of screening;
in fact, Ma � 10−5 is required to reduce |m| by 10 per cent when
the confining stress of the compressed, equatorial magnetic field is
modelled faithfully. In this regime, inaccessible to previous analy-
ses due to numerical breakdown (Hameury et al. 1983; Brown &
Bildsten 1998; Litwin et al. 2001), the latitudinal pressure gradient
at the base of the polar column forces the polar magnetic field to
buckle, and the accreted material spreads equatorward together with
frozen-in magnetic flux (Melatos & Phinney 2001). We compute the
structure of the highly distorted magnetic field, and hence |m|, as a
function of Ma.

A key advance in the present work is that the mass–flux distribu-
tion in each equilibrium state is self-consistent; our equilibria are
generated by a continuous deformation of the flux surfaces of the
initial magnetic field (say, a dipole), in a manner which preserves
flux-freezing. This is not true of previous calculations, where the
mass–flux distribution is unconstrained relative to the initial state
(Hameury et al. 1983; Brown & Bildsten 1998; Litwin et al. 2001;
Melatos & Phinney 2001). However, several other important effects
are not included to keep the problem manageable, as follows.

(i) Ohmic dissipation is neglected, even though the diffusion
and accretion time-scales are comparable for the smallest mag-
netic structures predicted by the theory (Brown & Bildsten 1998;
Cumming, Zweibel & Bildsten 2001).
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(ii) We do not investigate the stability of the hydromagnetic
equilibria we compute; sharp magnetic-field gradients are poten-
tially disrupted by Rayleigh–Taylor and interchange instabilities
(Bhattacharya 1999; Cumming et al. 2001; Melatos & Phinney
2001).

(iii) We treat the neutron star as a hard surface; subsidence of
accreted material, and incorporation into the crust, are neglected
(Bhattacharya 1999).

The paper is structured as follows. In Section 2, we introduce
the theoretical framework for calculating the self-consistent hydro-
magnetic equilibrium state of an accreting neutron star. Analytic and
numerical methods of solution are given in Section 3. The proper-
ties of the equilibria are investigated in Section 4, |m| is computed
as a function of Ma and the radius of the polar cap, and the novel
feature of magnetic bubbles is explored. The limitations of our re-
sults, with respect to time-dependent processes like hydromagnetic
instabilities and ohmic dissipation, are assessed in Section 5.

2 T H E O RY O F E QU I L I B R I A

2.1 Hydromagnetic force balance

The equations of non-ideal magnetohydrodynamics (MHD) in SI
units (Bernstein, Frieman & Kruskal 1958) comprise the equation
of mass conservation,

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

the equation of motion,

ρ
∂v

∂t
+ ρ(v · ∇)v = −ρ∇φ − ∇ p +

1

µ0
(∇ ×B )× B, (2)

and the induction equation (minus the displacement current),

∂B

∂t
− ∇ × (v× B) =

1

µ0σ
∇2

B, (3)

supplemented by ∇ · B = 0 and an adiabatic or isothermal equa-
tion of state, d(pρ−�)/dt = 0. In this notation, B, ρ, p, φ, v and σ
represent the magnetic field, mass density, kinetic pressure, gravi-
tational potential, plasma bulk velocity and electrical conductivity,
respectively. Elastic stresses are neglected (Romani 1990; Melatos
& Phinney 2001), as is the Hall effect (Geppert & Rheinhardt 2002).

In the magnetostatic limit, defined by v = 0 and ∂/∂t = 0, the
equation of motion reduces to

∇ p + ρ∇φ −
1

µ0
(∇×B)×B = 0. (4)

The local Alfvén time-scale, τ A = L/vA � 4 × 10−2 s for (L � 50 m),
is much shorter than the accretion time, τ a ∼ 107 yr. Equations (1)
and (3) are also satisfied identically (in the ideal-MHD limitσ →∞)
and drop out of the problem. To preserve the information encoded in
(1) and (3), we must impose an auxiliary constraint on the mass–flux
distribution of the final state in order to connect it with the initial
state and uniquely specify the problem. The constraint expresses the
fact that material cannot flow across magnetic flux surfaces in the
limit σ → ∞. We delay consideration of ohmic dissipation, where
magnetic flux diffuses through the fluid at short length-scales via
(3), to a future paper.

We define spherical polar coordinates (r, θ , φ) such that θ = 0
defines the symmetry axis of the pre-accretion magnetic field. For
an axisymmetric configuration, there exists a scalar flux function
ψ(r, θ ) that generates B via

B =
∇ψ

r sin θ
× êφ . (5)

The toroidal component Bφ is zero at all times, if the accretion
process is axisymmetric and Bφ = 0 in the initial accretion state.
Upon substituting (5) into (4), we obtain

∇ p + ρ∇φ + (�2ψ)∇ψ = 0, (6)

with

�2 =
1

µ0r 2 sin2 θ

[

∂
2

∂r 2
+

sin θ

r 2

∂

∂θ

(

1

sin θ

∂

∂θ

)]

. (7)

We can then resolve (6) into components parallel and perpendicular
to the magnetic field:

ρ∇φ + ∇ p = 0, (8)

ρ∇φ + ∇ p + (�2ψ)∇ψ = 0. (9)

In this paper, we assume the accreted material forms an isothermal
atmosphere, with p = c2

s ρ, where cs denotes the isothermal sound
speed. [The force equation for a general equation of state p = p(ρ)
is given in appendix A of Mouschovias (1974).] The gravitational
potential φ, determined by Poisson’s equation, ∇2φ = 4πG ρ, is
the sum of contributions from the accreted material (Ma) and the
underlying neutron star (M∗), with Ma � M∗. As the hydromagnetic
length-scale |B|/|∇B| is much smaller than the hydrostatic length-
scale |p|/|ρ∇φ| (verified a posteriori), ∇φ is approximately constant
near the stellar surface for our purposes, i.e.

φ = G M∗r/R2
∗, (10)

where M∗ and R∗ are the mass and radius of the neutron star.
We use the method of characteristics to solve (6) assuming the

gravitational field is radial (Ma � M∗). The r component reads
ρ r + (�2ψ)/c2

sψ r = − ρ/c2
s φ r and the θ component reads ρ θ

= (�2ψ)/c2
sψ θ , where subscripts indicate differentiation. Together

these become: ρ r + (ψ r/ψ θ )ρ θ = − ρ/c2
sφ r. The characteristic

equation is: dr = (ψ θ /ψ r) dθ = − dρ/(φ ρ). This is solved to yield
the two characteristic curves: log ρ + φ/c2

s = C1 and ψ = C2. Thus
the characteristic solution is log ρ + φ/c2

s = f (ψ) or, equivalently,

p = F(ψ) exp
[

−(φ − φ0)/c2
s

]

(11)

where F(ψ) = exp[f (ψ)] is an arbitrary positive function to be
specified and φ0 = GM∗/R∗ is a reference potential. This is just
the usual barometric formula with a different base pressure F(ψ)
for each field line. Note that ∇F is parallel to ∇ψ , so ψ and hence
F are constant along a field line, and one has ∇F = F′(ψ)∇ψ .
Substituting into (6), we obtain a second-order, non-linear, elliptic
partial differential equation, the Grad–Shafranov equation, for ψ :

�2ψ = −F ′(ψ) exp
[

−(φ − φ0)/c2
s

]

. (12)

Equation (12) can be understood as follows. The quantity F is a
function of r and θ throughψ at hydrostatic equilibrium, expressing
the fact that magnetic forces act only perpendicular to field lines,
while pressure gradients balance gravity along field lines. If ψ(r, θ )
is given, and if matter is distributed between field lines so that the
forces parallel to field lines are in exact balance, then forces perpen-
dicular to the field lines are brought into balance by the appropriate
current density µ−1

0 ∇ × B.

2.2 Magnetic flux-freezing and the mass–flux ratio

Many authors guess F(ψ) when modelling various systems, e.g.
structures in the solar corona, like prominences and arcades (Dungey
1953; Low 1980), and accreting compact objects (Uchida & Low
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1981; Hameury et al. 1983; Brown & Bildsten 1998; Melatos &
Phinney 2001). As F(ψ) does not change in passing from the initial
(pre-accretion) to the final (post-accretion) state in the ideal-MHD
limit, the guessed F(ψ) conflicts with the initial F(ψ) except under
very special circumstances. In this paper, we adopt a self-consistent
approach whereby we calculate F(ψ) explicitly by demanding that
the mass–flux distribution of the final state equals that of the initial
state, plus the accreted material, as described below.

Define a local coordinate system (s, t), with unit vectors ês =

B/|B| and êt = ∇ψ/|∇ψ | parallel and perpendicular to the mag-
netic field, respectively. The amount of matter between two in-
finitesimally separated flux surfaces ψ and ψ + dψ is dM =

2π
∫

C
dsdtρr sin θ , where dsdt = |ês ds × êt dt | = ds dψ/|∇ψ |

is an infinitesimal area element, and C is the curve ψ[r(s), θ (s)] =

ψ . Hence we can write

dM

dψ
= 2π

∫

C

dsρ[r (s), θ (s)]r sin θ |∇ψ |−1, (13)

where dM/dψ is the mass–flux ratio. Upon substituting (11) into
(13), we arrive at

F(ψ) =
c2

s

2π

dM

dψ

{
∫

C

dsr sin θ |∇ψ |−1e−(φ−φ0)/c2
s

}−1

, (14)

which is to be solved simultaneously with (12) for ψ(r, θ ) given
dM/dψ . For problems involving accretion, the mass–flux constraint
is not conservative; dM/dψ in the final state equals dM/dψ in the
initial state plus the mass–flux distribution of the accreted material.

In disc-fed accretion, mass accretes on to polar magnetic field
lines that close beyond the inner edge of the accretion disc, located
at a radius

Ra

R∗

≈ 270

(

Ṁ

10−9 M� yr−1

)−2/7 (

|m|

1020 T m3

)4/7

(15)

in the equatorial plane (Basko & Sunyaev 1976; Ghosh & Lamb
1979). The flux surface that closes at Ra is related to the flux surface
at the stellar equator, ψ ∗ = ψ(R∗, π/2), by ψ a = ψ ∗R∗/Ra, for a
dipole. We do not model the mechanism by which plasma enters
the magnetosphere (e.g. Rayleigh–Taylor and Kelvin–Helmholtz
instabilities at R ≈ Ra), which sets the form of dM/dψ in reality,
as this is an unsolved problem (Basko & Sunyaev 1976; Arons
et al. 1984). Instead, we assume that the accreted mass is distributed
nearly uniformly within the polar flux tube 0 � ψ �ψ a, and that
leakage on to flux surfacesψ a �ψ �ψ ∗ is minimal. A step change
in dM/dψ at ψ a leads to numerical problems, so we approximate
the mass distribution over one hemisphere by M(ψ) = Ma(1 −

e−ψ/ψa )/2(1 − e−ψ∗/ψa ). We have checked that the solution of (12)
and (14) is not sensitive to the exact functional form of dM/dψ .
Finally, we assume that the accreted material does not transport any
magnetic flux, e.g. from the accretion disc (cf. Uchida & Low 1981).
If the magnetic dipole moment is less than ≈1016 T m3, we have
ψ a ≈ψ ∗ (Cheng & Zhang 1998) and the above functional form of
M(ψ) is inadequate. This occurs at the latest stages of accretion (M
a > 0.1 M�), outside the regime modelled in this paper.

2.3 Initial and boundary conditions

In this paper, we investigate the distortion of an initially dipolar
magnetic field,

ψi(r , θ ) = ψ∗ R∗r−1 sin2 θ, (16)

with ψ ∗ = B∗R2
∗/2, where B∗ is the polar magnetic field before

accretion. Given dM/dψ as a function of Ma, we solve (12) and
(14) subject to the Dirichlet boundary conditions

ψ(R∗, θ ) = ψ∗ sin2 θ and lim
r→∞

ψ(r , θ ) = 0. (17)

At the surface, i.e. the crystalline layers of density �4 × 1014 kg
m−3, the field is dipolar. Far from the star, one has ψ ∝ r−1, as for
any localized, static current distribution. The approximation that the
surface field remains dipolar at all times is valid provided that Ma is
small compared to M∗, for then the footpoints of the magnetic field
lines are anchored to the highly conducting, high-inertia interior of
the star. The surface field may be generated deep in the neutron-star
core or by a dynamo in the inner crust (Thompson & Duncan 1993;
Konenkov & Geppert 2001). This line-tying boundary condition is
a feature of models of magnetic loops in the solar corona (Low
1980; Zweibel & Hundhausen 1982) and earlier work on neutron-
star accretion (Uchida & Low 1981; Hameury et al. 1983; Brown
& Bildsten 1998; Litwin et al. 2001). A drawback of preventing the
accreted matter from sinking is that unrealistically high densities
(�4 × 1014 kg m−3) are produced locally, at the base of the column,
for Ma > 10−8 M�. Recent modelling of the magnetic field beneath
the surface of an accreting neutron star, based on (3) with a veloc-
ity distribution for the superfluid assumed, illustrates the effects of
submergence and subsequent incorporation of accreted matter into
the crust (Choudhuri & Konar 2002). Cumming (2002) discusses a
vacuum (like in this paper) and a screened boundary condition at
the surface.

In the numerical calculations presented in Section 4, two extra
grid-related boundaries are introduced: the outer radius of the grid,
at r = Rm, and the lines θ = 0 and θ = ± π/2, arising when the grid
is restricted to one quadrant or hemisphere. We choose Rm large
enough to include the layer where the accretion-induced screen-
ing currents lie, i.e., above the greater of the hydrostatic (c2

s /g) and
Alfvén (|B|/|∇B|) scaleheights. In practice, this is achieved by in-
creasing Rm until the dipole moment of the solution varies by less
than 0.1 per cent. At r = Rm, the magnetic field is taken to be radial,
with ∂ψ /∂ r(Rm, θ ) = 0, i.e. a free boundary. [It is outside the scope
of this paper to model the disc–magnetosphere interface in detail;
see Rastätter & Schindler (1999).] Another possible way to treat
the boundary condition at r = Rm is to set ψ(Rm, θ ) = ψm sin2θ

and adjust ψm iteratively to give the self-consistent dipole moment
of the solution, but we encountered numerical difficulties with this
approach.

There are two physically plausible choices for the polar and equa-
torial boundary conditions: (i) ψ(r, π) = 0 and ∂ψ /∂θ (r, π/2) = 0,
as for the initial dipole, or (ii) ∂ψ /∂θ (r, ± π/2) = 0, north–south
symmetry. We mostly adopt (i) but explore (ii) for completeness
in Section 4.6, where it is shown that field lines on either side of
the pole are peeled away, leaving the ψ = 0 line isolated, with-
out affecting the dipole moment significantly. Strictly speaking, the
conditions ∂ψ /∂θ (r, π/2) = 0 and ∂ψ /∂r(Rm, π/2) = 0 force the
magnetic field to vanish artificially at (Rm, π/2), but |m| is affected
by less than 0.1 per cent (see Section 4).

3 S O L U T I O N M E T H O D S

In this section, we discuss three ways to solve (12) and (14): analyt-
ically by Green functions (Section 3.1), analytically in the small-Ma

approximation (Section 3.2), and numerically, by an iterative algo-
rithm due to Mouschovias (1974) (Sections 3.3 and 3.4).
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3.1 Green functions

The Grad–Shafranov boundary value problem (12),

�2ψ(r , θ ) = Q(r , θ ), (18)

with

ψ(R∗, θ ) = ψ∗ sin2 θ and lim
r→∞

ψ(r , θ ) = 0w, (19)

can be solved analytically by Green functions if the source term
Q(r, θ ) is known as a function of r and θ . In principle, Q(r, θ ) is
given by (12) and (14); in practice, it is not known analytically. With
ψ specified on the boundary S of the volume V , we can write (see
Appendix A1)

ψ(x) =

∫

V

d3
x

′G∗ Q +

∫

S

d2
x

′(ψ∇G∗ − G∗∇ψ + bψG∗), (20)

where G and G∗ are Green functions for L = µ0 r2 sin2θ∇2 and its
adjoint L∗, satisfying

∂
2G

∂r 2
+

(1 − µ2)

r 2

∂
2G

∂µ2
=

1

r 2
δ(r − r ′)δ(µ− µ′), (21)

and

∂
2G∗

∂r 2
+

(1 − µ2)

r 2

∂
2G∗

∂µ2
+

4

r

∂G∗

∂r
−

4µ

r 2

∂G∗

∂µ

=
1

r 2
δ(r − r ′)δ(µ− µ′), (22)

with µ = cos θ and b = −2r−1(êr + cot θ êθ ). Upon solving (21)
and (22), we obtain

G(r , µ, r ′, µ′) =

∞
∑

�=0

N−1
� g�+1(r , r ′)(1 − µ2)C3/2

� (µ′)C3/2
� (µ),

(23)

and

G∗(r , µ, r ′, µ′) =

∞
∑

�=0

N−1
� g∗

� (r , r ′)(1 − µ′2)C3/2
� (µ′)C3/2

� (µ),

(24)

with

g�(r , r
′) =

1

(2�+ 1)r ′2

r �+1
<

r �>

[

(

R∗

r<

)2�+1

− 1

]

, (25)

r< = min(r, r′), r> = max(r, r′),

g∗
� (r , r ′) =

(

r ′

r

)2

g�+1(r , r ′), (26)

N� = 2(�+ 1)(�+ 2)(2�+ 3)−1, (27)

and hence, from (20), we arrive at the complete solution

ψ(r , µ) =
ψ∗ R∗(1 − µ2)

r
+ (1 − µ2)

∞
∑

�=0

N−1
� C

3/2
� (µ)

×

∫ 1

−1

dµ′

∫ ∞

R∗

dr ′r ′2g∗
� (r ′, r )C3/2

� (µ′)Q(r ′, µ′). (28)

C
3/2
� (µ) denotes a Gegenbauer polynomial of order � (see

Appendix A).

3.2 Analytic approximation for small Ma

In the limit of small Ma, where dM/dψ and hence Q(r, θ ) are small,
one can show (see Appendix A3) that the magnetic flux distribution
reduces to

ψ(r , θ ) = ψi(r , θ )(1 − b2 Ma/Mc) (29)

far from the star (r → ∞), with

Mc = 2πG M∗ψ
2
∗/µ0c4

s R2
∗ (30)

For convenience, we write this using CGS units

Mc

M�
= 1.2 × 10−4

(

cs

108 cm s−1

)−4(
B∗

1012 G

)2

, (31)

where M∗ = 1.4 M� and R∗ = 106 cm.
It follows that the magnetic dipole moment scales as |m| =

|mi|(1 − Ma/Mc). This scaling agrees, in the small-Ma limit, with
empirical scalings of the form |m| = |mi|(1 + Ma/Mc)−1, with Mc ≈

10−5 M�, that have been proposed in the literature (Shibazaki et al.
1989; Cheng & Zhang 1998).

3.3 Iterative numerical scheme

To solve (12) and (14) self-consistently for ψ(r, θ) for Ma � Mc,
we employ an iterative numerical algorithm similar to the one in-
troduced by Mouschovias (1974) to study the Parker instability of
the Galactic magnetic field. The algorithm and its performance are
discussed in detail in Appendices A and B and summarized briefly
here.

Given dM/dψ and an initial guess ψ (0)(r, θ ), we calculate the
locations of Nc contours of ψ , spaced either linearly or logarithmi-
cally inψ , capturing topologically disconnected contours and closed
loops (Snyder 1978). We then compute F[ψ (0)] from (14) and hence
F′[ψ (0)] after polynomial fitting (simple differencing causes numer-
ical difficulties; see Appendix B3). The Poisson equation (12) is
solved with this source term using successive overrelaxation to ob-
tain ψ (0)

new(r, θ ), and the next iterate is obtained by underrelaxation:
ψ (n+1) = �(n)ψ (n) + [1 − �(n)]ψ (n)

new, with 0 � �(n) � 1. Iteration
continues until the convergence criterion |ψ (n+1)

new −ψ (n)|<ε |ψ (n+1)
new |

is satisfied on average across the grid. We usually take ε = 10−2 in
this paper. Physically, the algorithm starts from a trial magnetic field
(and associated current distribution), the accreted mass Ma is dis-
tributed among the flux tubes according to dM/dψ , mass is allowed
to slide up or down flux tubes to achieve hydrostatic equilibrium
along B, a new current distribution is computed that balances forces
perpendicular to B, and the process is repeated.

3.4 Numerical convergence

There is no general rule for choosing �(n). We find, by experimen-
tation, that one must decrease 1 −�(n) as Ma increases; a useful rule
of thumb is

1 −�(n) ≈ (Ma/10−7M�)−1(ψ∗/10ψa)
−2,

for Ma � 10−7 M�. More details can be found in Table B1 and
Appendix B4. At least 2/[(1 − �) log10(ε)] iterations are required
for convergence; bootstrapping is recommended, i.e. using the equi-
librium solution for a lower value of Ma as the first iterate instead
of the dipole. We show in Appendix B5 that the error in ψ aver-
aged over the grid scales as G−1.6, where G is the number of grid
cells in each dimension. The optimum number of contours is Nc ≈

G − 1; F′(ψ) becomes jagged for Nc � G due to grid crossings
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Figure 1. Mean residual versus iteration number. Ma = 10−6 M�, θ =

0.995 (top). Ma = 10−5 M�, θ = 0.95 (bottom).

(as demonstrated in Fig. B1 in Appendix B). To concentrate maxi-
mum grid resolution near the stellar surface and at the edge of the
polar cap (ψ = ψ a), where screening currents predominantly re-
side and gradients of ρ and ψ are steepest, we scale the r and θ
coordinates logarithmically as described in Appendix B1.

Fig. 1 displays the mean residual as a function of iteration num-
ber. Convergence is rapid for Ma � 10−6 M� and poor for Ma �

10−4 M�. Large fluctuations in the mean residual are mainly due to
the polynomial fit to F(ψ) and the appearance of magnetic bubbles
(see Section 4.7).

4 E QUATO RWA R D H Y D RO M AG N E T I C

S P R E A D I N G

In this section, we present the results of the analytic and numerical
calculations described in Section 3. The hydromagnetic structure of
the polar ‘mountain’ formed by the accreted material is described
in Sections 4.1 and 4.3 and compared with previous calculations in
which F(ψ) is arbitrary (e.g. Brown & Bildsten 1998). The physics
of equatorward spreading of the accreted material and the formation
of an equatorial magnetic ‘tutu’, including a criterion for the onset
of spreading, is discussed in Section 4.4. The scalings of |m| with
respect to Ma and b = ψ ∗/ψ a are derived analytically and numer-
ically in Sections 4.5 and 4.6. Finally, the formation of magnetic
bubbles disconnected from the star – a new effect – is explored in
Section 4.7. We start from the undisturbed dipole (16) and adopt the
following physical parameters: M∗ = 1.4 M�, R∗ = 104 m, B∗ =

Figure 2. Polar plot of equilibrium magnetic field lines (solid curves) and
density contours (dashed curves) for Ma = 10−5 M�. The coordinates mea-
sure altitude above the stellar surface. Density contours are drawn for ηρmax

(maximum at the pole, ρmax = 2.52 × 1017 kg m−3) with η = 0.8, 0.6, 0.4,
0.2, 0.01, 0.001, 10−4, 10−5, 10−6, 10−12.

108 T (Hartman et al. 1997), cs = 106 m s−1, x0 = c2
s R2

∗/GM∗ =

0.54 m and hence a = R∗/x0 = 1.86 × 104 (Brown & Bildsten 1998).
The results are mostly presented in rectangular (r, θ ) plots scaled
logarithmically where appropriate to emphasize the boundary layer
of compressed magnetic field.

4.1 Structure of the polar mountain and equatorial

magnetic tutu

During the early stages of accretion, matter piles up on the polar cap,
confined by the tension of the polar magnetic flux tube. However, for
Ma � 10−5 M�, the hydrostatic pressure at the base of the accretion
column overcomes the magnetic tension and matter spreads over the
stellar surface towards the equator, dragging along frozen-in polar
field lines. The spreading distorts B, generating screening currents
µ−1

0 ∇ × B, which act to decrease the magnetic dipole moment (|m|

is dominated by the polar field). In its turn, the spreading is also
counteracted by the tension of the magnetic field lines compressed
towards the equator. These equatorial stresses, neglected in previous
work (Hameury et al. 1983; Brown & Bildsten 1998; Litwin et al.
2001), greatly increase the Ma required to reduce |m|.

Fig. 2 shows the magnetic field configuration and density profile
for Ma = 10−5 M� in cross-section (cf. schematic version in Fig. 1
of Melatos & Phinney 2001). The ‘polar mountain’ of accreted ma-
terial is readily apparent, traced out by the dashed contours. Fig. 3
shows the distorted magnetic field configuration overlaid on the
field lines of the undisturbed dipole. The distorted field exhibits a
pinched, flaring geometry, termed an ‘equatorial tutu’ by Melatos
& Phinney (2001). A more complete view of the overall hydromag-
netic structure can be gained from Fig. 4. The tutu-like field is shown
again in Figs 4(a) and (b), while the polar mountain (ρ) is shown in
Fig. 4(c). In Fig. 4(d), where the radius of curvature of B is smaller
than the hydrostatic scaleheight x0, the toroidal screening currents
are confined below altitude x0, and are concentrated near the polar
cap. (Note that ohmic dissipation, neglected here, is important at
these scales.) The J × B force per unit volume (Fig. 4e) balances
the pressure gradient (Fig. 4f), preventing the accreted material from
spreading all the way to the equator.
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Figure 3. Polar plot of magnetic field lines after accretion (solid curves)
and before accretion (dashed curves) for Ma = 10−5 M�. The coordinates
measure altitude above the stellar surface.

The maximum density, attained at (r, θ ) = (R∗, 0), is found
empirically to be ρmax = Mab

2/(2x3
0π a2) ≈ 6 × 1012(b/10)2

(Ma/10−10 M�) kg m−3, in accord with analytic estimates for
ρ(r, θ ) ≈ ρmax exp(−x/x0) exp(−ψ /ψ a) carried out in Appendix
A. Consequently, ρmax exceeds the crustal density 4 × 1014 kg m−3

for Ma � 10−8 M�. In reality, this overdensity is moderated by
sinking (Brown & Bildsten 1998; Choudhuri & Konar 2002), which
is prevented by the hard surface in our calculation. (We can alleviate
the overdensity in our model by relaxing the isothermal assumption
or allowing a non-barometric density distribution along contours.)
For Ma � 10−6 M�, the maximum magnetic field strength becomes
unrealistically large (Bmax � 1011 T) below an altitude x0, in re-
sponse to ρmax. Such field strengths formally exceed the yield stress
of the crust (Romani 1990).

4.2 Sinking

The proportion of the accreted material that sinks is not well con-
strained. We consider a crude model of sinking in which a proportion
s of the accreted matter sinks, leaving a proportion (1 − s) to spread.
This is modelled by setting

dM

dψ
=

Ma

ψa

[

(1 − s)e−ψ/ψa

2(1 − e−ψ∗ )
+

s

2b

]

. (32)

We find that for Ma = 10−5 M�, and for s = 0.9 (i.e. all but
10−6 M� redistributed), the resultant dipole moment increases from
≈0.91 to 0.96.

4.3 Self-consistent mass–flux distribution

In previous studies of neutron-star accretion, F(ψ) was chosen arbi-
trarily (Uchida & Low 1981; Hameury et al. 1983; Brown & Bildsten
1998; Litwin et al. 2001; Melatos & Phinney 2001). In this paper, by
contrast, we determine F(ψ) self-consistently by solving (12) and
(14) simultaneously for a physically plausible choice of dM/dψ that
places most of the accreted material at the poles of the initial, undis-
turbed dipole. Figs 5(a) and (b) compare our self-consistent F(ψ)
against the functional forms guessed by previous authors for two val-
ues of Ma. The differences are significant, especially near the pole
(ψ ≈ 0). [An analogous difference was discovered by Mouschovias

(1974) when solving for the final states of the Parker instability in
the Galaxy self-consistently, relative to the previous guess of Parker
(1966).] A polynomial fit in the numerical code yields the approxi-
mate form

F(ψ̃) = exp(ψ̃)(0.027ψ̃4 − 0.13ψ̃3

+ 0.21ψ̃2 − 0.021ψ̃ + 0.1333) (33)

for Np = 4,Ma = 1.5 × 10−4M�, b = 3, ψ̃ = ψ/ψa, and the
choice of dM/dψ in Section 2.2.

4.4 Onset of spreading

Brown & Bildsten (1998) showed that, for an initially vertical field
and neglecting the stress from compressed equatorial flux, the con-
dition for spreading is given by α = B2/2µ0p � x0/Rcap ≈ 0.01,
where Rcap = (R3

∗/Ra)1/2 is the polar cap radius. Given that αmin =

B2
∗/(2µ0pmax) ≈ 0.27(B∗/108 T)2(Ma/10−12 M�)−1, it follows that

the accreted matter distorts the magnetic field negligibly for Ma �

3.7 × 10−9 M� (i.e. αmin � 0.01). Above this value, progressively
more distortion takes place for Ma = 10−9, 10−7, 10−5 M�, as shown
in Fig. 6. The curved field lines have a large tangential component,
previously negligible, which increases the magnetic field strength
|B| substantially for Ma � Mc/a = 8 × 10−11 M�, as predicted by
the Green function analysis in Appendix A3. This induced magnetic
pressure balances the overpressure of the accreted material. How-
ever, the effect on the magnetic dipole moment is negligible (<1 per
cent) due to countervailing magnetic stresses from the compressed
field at the equator; the magnetic radius of curvature is less than x0

until Ma exceeds ≈1.4 × 10−6 M�, as proved in Appendix A3. Note
that the compression of field lines as |B| increases is imperceptible
in Fig. 6 because of the extent of the horizontal axis; |B| increases
predominantly due to the Bθ component. The top of the boundary
layer is roughly where Bθ vanishes, i.e. at an altitude x = x0 ln [(a
+ 1)/(1 − Mc/Ma)] ≈ 5.3 m. for Ma < Mc.

We zoom in on the pole to compare with Litwin et al. (2001)
in Fig. 7. Our results differ because Litwin et al. (2001) has a free
boundary at the polar cap edge and ignores the θ terms in the Grad–
Shafranov equation, while we impose north–south symmetry at the
equator, with no condition at the polar cap edge. This allows the
compressed magnetic field equatorward of the polar cap to push
back on the polar flux tube. Furthermore, we prescribe dM/dψ and
calculate F(ψ) instead of prescribing F(ψ). We observe curvature
comparable to Litwin et al. (2001) for Ma ≈ 10−8 M� and thus the
ballooning instability may be relevant, but a detailed calculation is
beyond the scope of this paper.

An order-of-magnitude estimate of Mc, the mass required to
buckle the magnetic field, can be obtained in the following way.
The hydrostatic pressure at the base of the accreted column is given
by pmax = c2

sρmax = c2
s Mab

2/(2πR2
∗x0), i.e. the weight per unit area

of the mass Ma spread over approximately two hemispheres. This
pressure is balanced by the tension of the magnetic field compressed
into a layer of width L ≈ 6 m along the surface and at the equator
(see Fig. 2). In the layer, we have B1 ≈ B∗R∗/L ≈ 1012 T by flux
conservation. Hence the hydrostatic and magnetic pressures balance
for Ma = 2B2

∗ R4
∗ yx0/(c2

s µ0 L2) ≈ 2 × 10−6 M� in accord with the
numerical results.

4.5 Reduction of the magnetic dipole moment

The magnetic dipole moment

|m| =
3r 3

4

∫ 1

−1

d(cos θ ) cos θBr (r , θ ) (34)
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Figure 4. Ma = 10−5 M�. (a) Magnetic field lines (ψ contours), (b) magnetic field strength (|B| contours), (c) density, (d) current, (e) Lorentz force, and (f)
pressure gradients. For each quantity x, values η xmax are plotted, with η = 0.8, 0.6, 0.4, 0.2, 0.01, 0.001, 10−4, 10−5, 10−6, 10−12. Maximum values are found
to be ρmax = 1.7 × 1017 kg m−3, |B|max = 3.9 × 1011 T, |J|max = 2.0 × 1015 A m−2, |J × B|max = 3.3 × 1024 N m−3, |∇P|max = 1.9 × 1028 N m−3.

is plotted as a function of r in Fig. 8(a). The screening currents are
confined to a thin layer above the stellar surface; |m| is essentially
constant with r above this layer. The layer is compressed as Ma

increases, with half-width comparable to x0 for Ma ≈ 10−4 M�. The
asymptotic value of |m| also decreases as Ma increases, as expected;
equatorward hydromagnetic spreading drags magnetic flux away
from the pole, and |m| is sensitive to Br near the pole through (34).

Fig. 8(b) is a plot of |m| versus Ma. For Ma � Mc = 1.2 ×

10−6 M�, |m| decreases proportional to (1 − Ma/Mc), as predicted

analytically in Section 3.2. For Ma � Mc, we obtain the empirical
relation

|m|

|mi|
=

(

Ma

4.6 × 10−5 M�

)−2.25±0.22

(35)

by fitting a power law to the numerical results for Ma � 5 ×

10−5 M�, as in Fig. 8(c). However, (35) cannot be extrapolated
reliably to the regime Ma � 10−4 M� for two reasons. First, our
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Figure 5. Comparison of the self-consistent F(ψ) (solid) for (a) Ma = 2
× 10−5 M�, b = 10 and (b) Ma = 1.5 × 10−4 M�, b = 3 with others in
the literature: Brown & Bildsten (1998) (dotted) Litwin et al. (2001) (dot-
dashed), and Melatos & Phinney (2001) (dashed). These curves are scaled
to the value at the pole, F(0).

numerical scheme is limited by the steepness of gradients in the
source term of (12). Physically, these scale as the hydrostatic pres-
sure, with dF/dψ ∝ Mab as shown in Appendix A. We encounter
convergence errors above 50 per cent for Mab � 3 × 10−4 M�. Sec-
ond, it is shown in Section 4.7 that magnetic bubbles, disconnected
from the stellar surface, are created for Mab � 10−4 M�, leading
to the steep dependence of |m| on Ma in (35). A word of caution:
when bubbles appear, it is unclear how to interpret |m| = |m|star +

|m|bubble. In reality, one has |m|bubble = 0 as r → ∞, because the
flux surfaces of the bubble are closed. However, at = Rm, the ingo-
ing and outgoing flux tubes of the bubble do not cancel perfectly
and one finds |m|bubble �= 0; bubble-related currents outside the so-
lution domain (r > Rm), need to be included in order to recover
|m|bubble = 0.

4.6 Polar cap radius

We now discuss the effect on |m| of varying b = ψ a/ψ ∗, or equiv-
alently the polar cap radius Rcap = R∗ sin−1(b−1/2). Although Rcap

is not known exactly without a detailed model of the flow of matter
from the accretion disc to the stellar surface (Arons et al. 1984),
estimates of its size from (15) are typically of order 1 km (Litwin

et al. 2001), i.e. b � 100, for B∗ = 108 T (Arons et al. 1984). Fig. 9
illustrates the magnetic configuration obtained for b = 3 and = 10,
and |m|/|mi| is plotted versus Ma in Fig. 8(b), denoting b = 3 by
crosses and b = 10 by triangles. Note how the equilibrium state
changes with b. The mass–flux distribution dM/dψ ∝ exp(−ψ /ψ a)
implies a surface pressure distribution F(ψ) ∝ b exp(− ψ /ψ a),
so larger b means steeper pressure gradients. (Numerical difficul-
ties set in for b = 30, which can be partly alleviated by stretch-
ing the coordinates around ψ a.) Importantly, however, we find Mc

and the dipole moment |m| are independent of b. This is supported
by the Green function analysis in Appendix A, except when dM/dψ
depends explicitly on b, e.g. dM/dψ ∝ b(1 −ψ /bψ a)1/2 implies |m|

∝ b−1.
A related issue is whether |m| is affected in an unrealistic way by

the boundary condition ψ = 0 at θ = 0 in the examples presented
so far. It is conceivable, for example, that the ψ = 0 line is unstable
(‘on a knife edge’), while neighbouring field lines are peeled away
by accretion, unless it is forced to remain rectilinear artificially. As
it happens, however, this is not the case. Fig. 10 shows the output of
an experiment where the grid extends from equator to equator (|θ |
< π/2), and no boundary condition is imposed at θ = 0. Clearly,
the magnetic field and density profiles remain symmetric about the
magnetic pole, with ψ = 0 at θ = 0 emerging naturally, while |m|

is essentially unchanged.

4.7 Buoyant magnetic bubbles

From the sequence of panels in Fig. 6 (Ma/ M� = 10−9, 10−7, 10−5),
we observe that the magnetic field becomes increasingly distorted
as Ma increases. Eventually, for Ma � 10−5 M�, closed magnetic
bubbles are created that are disconnected topologically from the
surface of the star. This phenomenon is illustrated in Fig. 11. At the
value of Ma where a bubble is first created, a magnetic neutral point
(Y point) is observed to form on a field line near, but not at the pole.
The bubble closes at r < Rm in our simulation, but this may be a
result of the approximate free boundary condition ∂ψ /∂θ (Rm, θ ) =

0; in reality, it may connect to the accretion disc.
Bubbles correspond to a loss of equilibrium, analogous to

that which occurs during eruptive solar phenomena (Klimchuk &
Sturrock 1989), where no simply connected hydromagnetic equilib-
rium exists. In the Grad–Shafranov boundary problem, the source
term ∝ F′(ψ) in (12) increases with Mab, boosting �2ψ and hence
ψ above the surface (to balance the weight of the added material
through the Lorentz force). Above a critical value of Ma, flux sur-
faces are created with ψ < 0 or ψ > ψ ∗, which are disconnected
from the star and either form closed loops or are anchored ‘at infin-
ity’ (here the accretion disc). This is shown explicitly by (A19) in
the special case F′(ψ) = constant. From our numerical results, we
conclude that the critical Ma for bubble creation satisfies

Ma � 10−4b−1 M�. (36)

Note that bubble creation is a topological imperative. It is not the
result of a hydromagnetic instability, e.g. interchange or Rayleigh–
Taylor (Bernstein et al. 1958; Parker 1966; Mouschovias 1974).

Are the bubbles merely numerical artefacts (Brown &
Bildsten 1998)? No. Equation (A19) demonstrates explicitly that
flux surfaces with ψ < 0 or ψ > ψ ∗ are created for Ma satisfying
(36), at least for F′(ψ) = constant. A more subtle issue is whether
bubbles are the by-product of an artificial assumption in our ideal-
ized calculation. For example, if submergence of accreted material
were permitted, it might reduce the pressure gradients that produce
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Figure 6. Magnetic configuration as a function of accreted mass. Ma = 10−9 M�, ρmax = 4.2 × 1013 kg m−3, |B|max = 3.5 × 108 T (top); Ma = 10−7 M�,
ρmax = 4.2 × 1015 kg m−3, |B|max = 1.1 × 1010 T (middle); and Ma = 10−5 M�, ρmax = 1.7 × 1017 kg m−3, |B|max = 3.9 × 1011 T (bottom). Displayed
are contours of ψ (left, solid), |B| (right, solid) and ρ (left and right, dashed). with values ηρmax and η|B|max, where η = 0.8, 0.6, 0.4, 0.2, 0.01, 0.001, 10−4,
10−5, 10−6, 10−12.

the bubbles; on the other hand, ohmic dissipation would facilitate
detachment of bubbles in a pinched, Y-point configuration.

On some runs, bubbles appear and disappear during the itera-
tion process. This happens because the mass–flux distribution is not
conserved inside a bubble, although the code attempts to maintain
flux-freezing at the edge. If the route to convergence is a rough proxy
for time-dependent behaviour, as argued by Mouschovias (1974) for

iterative relaxation algorithms, the appearance and disappearance of
bubbles may represent evidence – though not proof – of transient
evolution in reality.

As the bubbles are disconnected topologically from flux surfaces
anchored to the star and accretion disc, they do not contain any
accreted material (in the ideal-MHD limit of zero cross-field trans-
port) and are lighter than their surroundings. It is therefore possible
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Figure 7. Magnetic field lines (solid) and density contours (dashed) around
the polar cap for Ma = 10−13 M� and b = 100; the parameters used in
fig. 2 of Litwin et al. (2001).

that they rise buoyantly and ultimately escape the magnetosphere
of the neutron star. This possibility cannot be investigated rigor-
ously in the context of the equilibrium calculations in this paper; it
is considered qualitatively in Section 5.3.

5 T I M E - D E P E N D E N T E F F E C T S

In this section, we discuss critically (but qualitatively) how the re-
sults of this paper may be affected by time-dependent processes that
cannot be modelled by a quasi-static sequence of hydromagnetic
equilibria. We consider Parker instabilities in Section 5.1, ohmic
dissipation in Section 5.2, and the buoyant rise of magnetic bubbles
in Section 5.3.

5.1 Hydromagnetic instabilities

The computed equilibria are manifestly distorted. Buoyancy of the
compressed magnetic flux can drive long-wave, slow MHD modes
that overturn the accreted matter on the Alfvén time-scale τ A, as
in the global Rayleigh–Taylor instability of the Galactic magnetic
field (Parker 1966; Mouschovias 1974). When the accreted matter
bends the polar magnetic field, there exists a significant component
of magnetic field perpendicular to gravity, a condition for the onset
of the Parker instability. In a plane-parallel geometry, wavelengths
longer than � = 4πx0/(2α + 1) are unstable (Mouschovias 1974),
where α = B2/(2µ0p). The geometry of an accreting neutron star
is far from plane-parallel. Nevertheless, in hydromagnetic equilib-
rium, one has α ∼ 1 locally in the boundary layer, yielding � = 2
m. The failure to converge at large Ma is also a hint, though not a
proof, that the Parker instability may operate. Mouschovias (1974)
advanced a similar convergence-based argument for the stability of
a stratified vertical column with periodic boundaries.

5.2 Ohmic dissipation

Our calculations are performed under the assumption of infinite
conductivity and hence flux-freezing. In reality, the accreted matter
is resistive due to electron–phonon and electron–impurity scattering
(Brown & Bildsten 1998; Cumming et al. 2001), potentially

Figure 8. (a) Dipole moment |m| as a function of altitude x = r − R∗,
normalized to |m| at r = R∗, for Ma/ M� = 10−6(top), 3 × 10−6, 10−5, 3
× 10−5, 10−4, 3 × 10−4 (bottom). (b) Dipole moment |m| as a function of
accreted mass Ma, normalized to the dipole moment |mi| before accretion,
for b = 3 (crosses) and b = 10 (triangles). (c) Power-law fit (solid), with
1σ errors (dashed), to dipole moment as a function of Ma for Ma > 2 ×

10−5 M�.
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Figure 9. Hydromagnetic equilibria for Ma = 10−5 M�, with b = 10 (top) and b = 3 (bottom). Contours of constant ψ (left) and |B| (right) are displayed,
with |B|max = 4.06 × 1011 T (b = 10) and 1.65 × 1011 T (b = 3). We find |m| ≈ 0.9|mi| in both cases.

Figure 10. Equilibrium magnetic configuration in the northern hemisphere,
showing contours of constant ψ (solid) and ρ (dashed). Equations (12) and
(14) are solved in the domain |θ | � π/2 here, compared to 0 � θ � π/2 in
earlier figures, in order to test the validity of the ψ = 0 boundary condition
at θ = 0.

enhanced by accretion-induced heating (Romani 1990; Urpin &
Geppert 1995).

The ohmic dissipation time-scale for a flux tube of width L is
given by τ d = µ0σL2, where σ is the electrical conductivity. For
typical conditions, we take σ ≈ 1022 s−1 and hence obtain τ d ≈

1014(L/R∗)2s. In comparison, the flow time-scale is given by τf =

4πR2
∗ρL/Ṁa, where Ṁa is the accretion rate. For ρ = 4 × 1014

kg m−3, L = 6 m (Section 4.4), and Ṁa = 1 × 10−8 M�yr−1, we
find τ f = 1 × 102 yr. Therefore, for the length-scales characteristic
of the compressed flux layer, we have τ f > τ d and magnetic flux
diffuses through the accreted material, broadening the compressed
flux layer until it is thick enough (L ≈ 600 m) that τ d ≈ τ f and
further thickening ceases. Brown & Bildsten (1998) showed that
τ f/τ d depends only on Ṁa and not on depth in the crust.

Note that the buried flux is resurrected on the time-scale τ d, af-
ter accretion stops. As the noted dipole field reasserts itself, |m|

increases. A full analysis of this process is left to future work.

5.3 Buoyant bubbles

Closed magnetic bubbles have ρ = 0 within and are lighter than
their surroundings, as discussed in Section 4.7. They tend to rise
buoyantly at the local Alfvén speed vA = (B2/µ0ρ)1/2 = cs(2α)1/2,
and hence escape the magnetosphere in ≈2 yr. Assuming an
accretion rate of 10−8 M� yr−1, it takes ≈104b−1(Ṁa/

10−8 M�yr−1)−1 yr to accrete enough mass to create one bubble.
Moreover, a typical bubble encloses ≈ψ a of magnetic flux. Hence
we conclude that magnetic flux is being expelled episodically from
the magnetosphere at an average rate of 1011(ψ∗/1016 Tm2)(Ṁa/

10−8 M� yr−1)−1 T m2 yr−1. Note that expelled flux is subsequently
replenished by the current deep in the star (since ψ is fixed at the
surface).
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Figure 11. Magnetic configuration for Ma = 2 × 10−5 M�, b = 10,
showing the creation of a bubble. We plot contours of constant ψ (top)
for initial (dashed) and final (solid) states, and final |B| contours η |B|max

(bottom, solid) and ρ contours (dashed) ηρmax; ρmax = 5 × 1017 kg m−3,
Bmax = 6.3 × 1011 T, and η = 0.8, 0.6, 0.4, 0.2, 0.01, 0.001, 10−4, 10−5,
10−6, 10−12.

6 C O N C L U S I O N

Observations of low-field binary neutron stars and recycled pul-
sars imply that the magnetic dipole moment of a neutron star is
reduced by accretion. In this paper, we undertake a self-consistent
analysis (numerical and analytic) of one mechanism that may ac-
count for the reduction observed: polar magnetic burial in the
ideal-magnetohydrodynamic regime. Our analysis has several new
features.

(i) Flux-freezing is strictly enforced when connecting the final
and initial magnetic configurations by solving self-consistently for
the mass–flux distribution rather than specifying it ad hoc (see
Fig. 5).

(ii) The Lorentz force due to equatorial magnetic field lines com-
pressed by equatorward hydromagnetic spreading is included when
calculating the confinement of the polar accreted column.

(iii) Numerical methods are developed for treating accreted
masses up to ≈10−4 M� (cf. 10−10 M� in previous work), where the
field is dramatically distorted and high-order multipoles dominate.

We report two key results.

(i) Ma � 10−5 M� must be accreted in order to reduce signif-
icantly the magnetic dipole moment |m| of the star, contrary to
previous estimates (Ma ≈ 10−10 M�) which neglected equatorial
magnetic stresses. For small Ma, we find |m| = |mi|(1 − Ma/Mc),
with Mc = 1.2 × 10−6 M�, (cf. Shibazaki et al. 1989). For Mc �

Ma � 10−4 M�, we find |m| = |mi|(Ma/4.6 × 10−5 M�)2.25±0.22.
(ii) When enough mass is accreted, such that Ma � 10−4b−1 M�,

the hydrostatic pressure gradient generates flux surfaces withψ < 0
or ψ > ψ ∗, creating closed magnetic bubbles that are disconnected
topologically from the stellar surface. The bubbles are valid solu-
tions of the Grad–Shafranov boundary problem, as confirmed by
analytic, Green function calculations; they are not numerical arte-
facts or fingerprints of hydromagnetic instabilities (e.g. Parker).

Several of our assumptions need to be relaxed in future work,
including

(i) perfect conductivity,
(ii) an impenetrable stellar surface, and
(iii) axisymmetry (which tends to suppress hydromagnetic insta-

bilities, for example).

Finally, the uniqueness of the hydromagnetic equilibria we com-
pute numerically is yet to be established.

Our equilibria serve as useful starting points for exploring the
stability of the magnetic configuration during and after accretion.
Our theoretical results will be tested against observational data from
binary neutron stars and recycled pulsars in a companion paper.
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A P P E N D I X A : A NA LY T I C S O L U T I O N O F T H E

G R A D – S H A F R A N OV P RO B L E M

In this appendix, we solve the Grad–Shafranov equation (12), to-
gether with the boundary conditions (17), by a Green function
approach.

A1 Green theorem for the Grad–Shafranov operator

An operator Lψ = ∇2ψ + b · ∇ψ + cψ , acting on a function ψ ,
possesses an adjoint L∗ψ = ∇2ψ − ∇ · (bψ) + cψ . The Grad–
Shafranov operator L = µ0r2 sin2θ�2, defined by (17) in spherical
polar coordinates, has b = −2r−1(êr + cot θ êθ ) and is not self-
adjoint (cf. ∇2). Letting G and G∗ be the Green functions associated
with the operators L and L∗, respectively,

LG(x, x
′) = δ(x − x

′), (A1)

L∗G∗(x, x
′) = δ(x − x

′), (A2)

related by the reciprocity relation G∗ (x, x′) = G(x′, x), we arrive at
the Lagrange identity

ψL∗G∗ − G∗Lψ = ∇ · (ψ∇G∗ − G∗∇ψ + bψG∗). (A3)

Upon integrating (A3) over a volume V , bounded by a surface S,
and using the divergence theorem, we obtain
∫

V

(ψL∗G∗ − G∗Lψ) dV

=

∫

S

(ψ∇G∗ − G∗∇ψ + bψG∗) · n̂ dS, (A4)

where n̂ is the unit vector normal to S. Given a boundary value prob-
lem Lψ(x) = Q(x) in the volume V , with ψ given on the boundary
S, we combine (A2) and (A4) to obtain

ψ(x) =

∫

V

d3
x

′G∗ Q

+

∫

S

d2
x

′
n̂ · (ψ∇G∗ − G∗∇ψ + bψG∗). (A5)

A2 Green function for the Grad–Shafranov equation

We wish to solve (12) for ψ in r � R∗ subject to Dirichlet boundary
conditions (17) onψ at r = R∗ and r → ∞. In cylindrical symmetry,
the volume and surface integrals in (20) reduce to surface and line
integrals, respectively. It is convenient to make the substitution µ=

cos θ , whereupon (12) becomes

∂
2ψ

∂r 2
+

(1 − µ2)

r 2

∂
2ψ

∂µ2
= µ0r 2(1 − µ2)

dF(ψ)

dψ

× exp
(

− φ0/c
2
s − G Mr/R2

∗c2
s

)

(A6)

and dF/dψ is a function of r and µ through ψ(r, µ).
We redefine L to be the operator on the left-hand side of (A6),

and Q(r, µ) to be the source term on the right-hand side, known
explicitly once F(ψ) is known. The Green function G for L satisfies

∂
2G

∂r 2
+

(1 − µ2)

r 2

∂
2G

∂µ2
=

1

r 2
δ(r − r ′)δ(µ− µ′) (A7)

and the Green function G∗ for L∗ satisfies

∂
2G∗

∂r 2
+

(1 − µ2)

r 2

∂
2G∗

∂µ2
+

4

r

∂G∗

∂r
−

4µ

r 2

∂G∗

∂µ

=
1

r 2
δ(r − r ′)δ(µ− µ′). (A8)

Equation (A8) is separable. We expand the solution in terms of
orthogonal Gegenbauer polynomials C

3/2
� (µ), viz.

G(r , µ, r ′, µ′) =

∞
∑

�=0

g�(r , r
′) × (1 − µ2)C3/2

� (µ′)C3/2
� (µ), (A9)

with

d2g�(r , r ′)

dr 2
−
�(�+ 1)

r 2
g�(r , r

′) = r−2δ(r − r ′). (A10)

The Gegenbauer polynomials satisfy

(1 − µ2)
d2

dµ2

[

(1 − µ2)C3/2
�−1(µ)

]

+ �(�+ 1)[(1 − µ2)C3/2
�−1(µ)] = 0

(A11)

and are related to associated Legendre polynomials via P1
�(µ) =

− (1 − µ2)1/2C
3/2
�−1(µ). The first few are listed for reference:

C
3/2
0 (µ) = 1, C

3/2
1 (µ) = 3µ, C

3/2
2 (µ) = 3/ 2(5µ2 − 1), C

3/2
3 (µ) =

5/ 2(7µ3 − 3µ), C
3/2
4 (µ) = 15/ 4(21µ4 − 14µ2 + 1), C

3/2
5 (µ) =

3/ 8(231µ5 − 210µ3 + 35µ). They satisfy an orthogonality condi-
tion:
∫ 1

−1

(1 − µ2)C3/2
� (µ)C3/2

�′
(µ) dµ = N�δ��′ (A12)

with

N� =
2(�+ 1)(�+ 2)

(2�+ 3)
. (A13)

We solve (A10) for g�(r, r′) subject to the following conditions:

(i) g�(r, r′) is continuous at r = r′,
(ii) limε→0[dg�(r , r ′)/dr ]r ′+ε

r ′−ε
= r ′−2, and

(iii) g�(R∗, r′) = 0, and (iv) limr→∞g�(r, r′) = 0.

The result is

g�(r , r
′) =

1

(2�+ 1)r ′2

r �+1
<

r �>

[

(

R∗

r<

)2�+1

− 1

]

, (A14)
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with r< = min(r, r′) and r> = max(r, r′), yielding

G(r , µ, r ′, µ′) =

∞
∑

�=0

N−1
� g�+1(r , r ′)

×(1 − µ2)C3/2
� (µ′)C3/2

� (µ).
(A15)

Similarly, we obtain

G∗(r , µ, r ′, µ′) =

∞
∑

�=0

N−1
� g∗

� (r , r ′)

×(1 − µ′2)C3/2
� (µ′)C3/2

� (µ),
(A16)

with G∗
�(r, r′) = (r′/ r)2g�+1(r, r′). Equations (A15) and (A16) are

consistent with the reciprocity relation. Note that basis functions
for G and G∗ for a non-self-adjoint operator are mutually but not
individually orthogonal (Morse & Feshbach 1953).

Upon combining the Green theorem (A4), the definition of G∗

(A16), the boundary conditions ψ(R∗, µ) = ψ ∗(1 − µ2), ψ(r, ±

1) = 0, limr→∞ψ(r, µ) = 0, G∗ (R∗, µ, r′, µ′) = 0, and the surface
gradient ∇ψ(r ,±1) · êµ = 0, we find that the boundary integral

over C reduces to
∫ 1

−1
ψ(R∗, µ)(∂G∗/∂r ) dµ′, yielding the complete

solution

ψ(r , µ) = ψ∗ R∗

(1 − µ2)

r
+ (1 − µ2)

∞
∑

�=0

N−1
� C

3/2
� (µ)

×

∫ 1

−1

dµ′

∫ ∞

R∗

dr ′r ′2g∗
� (r ′, r )C3/2

� (µ′)Q(r ′, µ′). (A17)

A3 Small-Ma limit: constant source term

To explore the form of the general solution (28), in the small-Ma

limit, we linearize F(ψ). We consider the special case F(ψ) =

Q0(ψ ∗ −ψ), giving Q(r, µ) = Q0(1 − µ2)r2 e−r. By orthogonality,
only the � = 0 term survives. We find
∫ ∞

R∗

g1(r , r ′)r ′4e−r ′

dr ′ = −
1

r
[ f1(r ) − f1(R∗)], (A18)

with f 1(r) = (r3 + 4r2 + 8r + 8) e−r, and hence

ψ(r , µ) = ψ∗ R∗

(1 − µ2)

r

{

1 −
Q0

4ψ∗ R∗

[ f1(r ) − f1(R∗)]

}

,

(A19)

using N 1 = 4/3. It is immediately clear that negative values of ψ
are possible if Q0 > 4ψ ∗R∗[f 1(r) − f 1(R∗)] raising the possibility
of closed magnetic loops (bubbles) constructed from flux surfaces
ψ < 0 or ψ > ψ ∗ and hence not anchored to the stellar surface.

In dimensionless coordinates, setting F̃(ψ̃) = k(b−ψ̃) we arrive
at

ψ̃(x̃, µ̃) = ψ̃i(x̃, µ̃)

{

1 +
k Q0a2

b

[

f1(x̃)e−x̃ − f2(a)(1 − e−x̃ )
]

}

,

(A20)

where f1(x̃) = 3x̃a−1 + a−2(3x̃2 + 8x̃) + a−3(x̃3 + 4x̃2 + 8x̃) and
f 2(a) = 1 + 4a−1 + 8a−2 + 8a−3. For x̃ � a, where the screening
currents dominate, ψ̃ reduces to ψ̃i(x̃, µ̃)[1−k Q0a2b−1(1−e−x̃ )]. In
Appendix A4, we show that k ≈ b/(2π a2), so the reduction factor
is (1 − b2Ma/Mc), remembering that Q0 ∝ Ma. For neutron-star
parameters, one has Mc ≈ 1.2 × 10−4 M�.

We can estimate the thickness of the compressed flux layer, xb, in
the small-Ma regime by solving ψ̃(xb, µ̃) = 0 to give xb = − ln(1 −

Mc/Ma). We may also estimate when |B| changes significantly from
its initial value |Bi|. Near the surface, the principal component

Bµ = (Bi)µ[ab2 Ma/Mce
−x̃ + 1 − b2 Ma/Mc(1 − e−x̃ )] (A21)

increases significantly for Mc/a � 8 × 10−11 M�, consistent with
the numerical results in Section 3. Setting Bµ = 0 gives an alterna-
tive estimate of the altitude below which the screening currents are
confined, with x̃ = ln[(a + 1)/(1 − b2 Mc/Ma)] = 9.8 consistent
with (A21). Including also the radial component Br, we obtain

B = Bi

[

4µ2
(

1 − b2 Ma/Mc(1 − e−x̃ )
)2

+ (1 − µ2)
(

1 + ab2 Ma/Mce−x̃
)2

]1/2

, (A22)

which reduces to

B = Bi

[

4µ2 + (1 − µ2)
(

ab2 Ma/Mc

)2
]1/2

(A23)

near the surface for 10−10 � Ma/Mc � 10−6. There is also a boundary
layer at the magnetic pole, where Bµ increases rapidly from zero
over a short distance. The width of this polar boundary layer may be
estimated by setting Bµ ≈ Br, yielding ≈πR∗ tan−1[2Mc/(ab2 Ma)]
≈ 20 m.

A4 Dipole field

A useful analytic approximation to the source term dF/dψ can be
derived for the dipole field in the early stages of accretion. In di-
mensionless coordinates, defined in Appendix B, (16) becomes

ψ̃i(x̃, µ̃) = b(1 − µ̃2)(1 + x̃/a)−1 (A24)

with a = R∗/x0 and b = ψ ∗/ψ a. From (14), we write dM̃/dψ̃ =

F̃(ψ̃)I (ψ̃), with

I (ψ̃) = 2π

∫

C

ds̃(1 − µ̃2)1/2(x̃ + a)e−x̃ |∇̃ψ̃ |−1. (A25)

C is a contour of constant ψ , along which we may write µ̃ =

[1 − ψ̃ r̃/(ab)]1/2; the integral terminates at x̃ = 0 on the surface
and x̃ = a(b/ψ̃−1) above the equator. Upon rearranging we obtain

I (ψ̃) = πa2 J (ψ̃)b−1/2(b − ψ̃)−1/2 (A26)

with

J (ψ̃) =

∫ a(b/ψ̃−1)

0

dx̃(1 + x̃/a)3e−x̃

[

1 −
x̃ψ̃

a(b − ψ̃)

]−1/2

(A27)

The function J (ψ̃) is plotted in Fig. A1. We observe that J ≈ 1 for all
ψ̃ except near the equator. Its limiting behaviour is I (ψ̃) → πa2b−1

as ψ̃ → 0, and I (ψ̃) → 2πa3(b − ψ̃)1/2b−3/2 as ψ̃ → b. If we
choose d M̃/dψ̃ = exp(−ψ̃)/2 specifically, then from (A25) we
have

F̃(ψ̃) =
b

2πa2
exp(−ψ̃)(1 − ψ̃/b)1/2[J (ψ̃)]−1. (A28)

Upon differentiating with respect to ψ̃ , we obtain

dF̃

dψ̃
= −

be−ψ̃

2πa2

{

(1 − ψ̃/b)−1/2 [1 + (1 − 2ψ̃)/(2b)][J (ψ̃)]−1

− (1 − ψ̃/b)1/2[J (ψ̃)]−2 J ′(ψ̃)
}

. (A29)
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Figure A1. The function J (ψ̃) (solid) compared with J (ψ̃) calculated
numerically for Ma = 10−5 M�, b = 10 (dashed).

A P P E N D I X B : I T E R AT I V E N U M E R I C A L

S C H E M E

B1 Dimensionless equations and logarithmic coordinates

It is convenient to convert to dimensionless variables x̃ = (r −

R∗)/x0, ψ̃ = ψ/ψa, M̃ = M/Ma, µ̃ = cos θ, F̃ = F/F0 and
B̃ = B/B0 where x0 = c2

s R2
∗/(GM∗) is the pressure scaleheight,

a = R∗/x0, F0 = Mac
2
s /x3

0, and B0 = ψ a/r2
0 = a2B∗/2b. Equations

(12) and (14) take the forms

∂
2ψ̃

∂x̃2
+

(1 − µ̃2)

(x̃ + a)2

∂
2ψ̃

∂µ̃2
= −Q0(1 − µ̃2)(x̃ + a)2e−x̃ dF̃

dψ̃
(B1)

and

dM̃

dψ̃
= 2πF̃(ψ̃)

∫

C

ds̃(1 − µ̃2)1/2(x̃ + a)e−x̃ |∇̃ψ̃ |−1, (B2)

respectively, with Q0 = µ0x0Mac
2
s /ψ2

a . Note that µ0 denotes the
permeability of free space (SI units).

As Ma increases, a thin boundary layer of screening currents forms
near the surface of the neutron star (see Section 4, and Melatos
& Phinney 2001). To concentrate maximum grid resolution at the
boundary layer and at the edge of the polar cap (ψ =ψ a), where the
gradients of ρ and ψ are steepest, we scale the r and θ coordinates
logarithmically, such that

x̃1 = log(x̃ + e−Lx ) + L x , (B3)

ỹ1 = − log[1 − (1 − e−L y )ỹ]. (B4)

Lx must be chosen sufficiently small to ensure at least several nodes
per hydrostatic (or hydromagnetic) scaleheight. To resolve steep
gradients at the equator, a similar transformation exists.

B2 Grid and Poisson equation

We use a grid of (Gx, Gy) cells in (r, θ ) and Nc contours of ψ , and
choose Nc � Gx to avoid zig-zags in I(ψ) due to grid crossings
which damage convergence (Fig. B1). We typically set Gx = Gy =

256 and Nc = 255, with the contour values chosen to lie between
grid-points at the stellar surface.

Given Ma and hence dM/dψ , and starting with a guess ψ (0)(r,
θ ), the left-hand side of (12), �2ψ (0), can be calculated at each
grid-point. The resulting Poisson equation is solved using a succes-
sive overrelaxation procedure with Chebychev acceleration (Press

Figure B1. Comparison of convergence for�= 0.995, b = 3, Ma = 8.5 ×

10−5 M�. (i) G = 64, Nc = 63 (top). (ii) G = 64, Nc = 255 (middle). (iii)
G = 256, Nc = 255 (bottom).

et al. 1992), stopping when the mean residual over the grid satisfies
〈�ψ /ψ〉 � ε = 10−2.

B3 Grad–Shafranov source term and contouring

To find the source term on the right-hand side of (12), F(ψ) is
calculated from (14). The integral along ψ contours relies on a

C© 2004 RAS, MNRAS 351, 569–584
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Table B1. Optimal �(n) values as a function of Ma and b.

b Ma/ M�
10−10 10−6 10−5 10−4

3 0.0 0.5 0.9 0.995
10 0.0 0.8 0.99 0.99999
30 0.0 0.99 0.999 —

Table B2. Average and maximum errors as a function of grid size.

Grid size Mean (�ψ /ψ) Max (�ψ /ψ)

8 0.060 3082 0.229 865
16 0.016 6787 0.121 939
32 0.003 079 97 0.022 2018
64 0.001 299 22 0.032 8857
128 0.000 404 714 0.005 897 75
256 0.000 286 883 0.010 4630

contouring algorithm adapted from Snyder (1978), which can follow
closed loops and topologically disconnected contours. Numerical
differentiation of F(ψ) by first- or second-order differencing leads
to numerical problems, magnifying small fluctuations in I(ψ) and
hence F(ψ). We overcome this by smoothing F(ψ) at each iteration
step, fitting an order Np polynomial (Np = 10 typically) to [I(ψ)]−1,
viz. [I (ψ)]−1 =

∑Np

i=0 ai (logψ)i , and then differentiating F(ψ) =

[I(ψ)]−1 dM/dψ analytically.

B4 Underrelaxation

The contour values of dF/dψ are mapped on to the grid by linear
interpolation and fed into (12) by underrelaxation, viz.

�2ψ (n+1)
new = −F ′[ψ (n)] exp

[

−(φ − φ0)/c2
s

]

, (B5)

ψ (n+1) = �(n)ψ (n) + [1 −�(n)]ψ (n)
new, (B6)

where ψ (n)
new is a provisional iterate and 0 � �(n) � 1 is the under-

relaxation parameter at the nth iteration. Convergence is reached
when
∣

∣ψ (n+1)
new − ψ (n)

∣

∣ < ε
∣

∣ψ (n+1)
new

∣

∣ (B7)

is satisfied for all grid-points. As a rule of thumb, we take ε =

10−2(Ma/10−6 M�); our solutions do not converge reliably for Ma

� 10−4 M�. The stability of the solution is checked by perturbing
it slightly and looking for reconvergence, or by resetting �(n) ≈ 0.

The optimal value of �(n) is governed by maximum ψ gradient
between grid-points, which in turn depends on Ma. We adjust �(n)

towards unity when |ψ (n+1)
new −ψ (n)| tends to increase. Table B1 shows

approximate optimal values of � for different input parameters,
chosen to minimize the number of iterations while still achieving
convergence.

B5 Testing and convergence

We tested the code by successfully reproducing the final equilibrium
states of the Parker instability, plotted in fig. 2 of Mouschovias
(1974), to an accuracy of 1 per cent. We also tested the code against
the exact analytic solution (A19) in Appendix A for constant dF/dψ .
Table B2 shows a comparison of the mean and maximum errors as
a function of grid size, relative to (A19), when solving the Poisson
equation directly [�(n) = 0].
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