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ABSTRACT
The theory of polar magnetic burial in accreting neutron stars predicts that a mountain of ac-

creted material accumulates at the magnetic poles of the star, and that, as the mountain spreads

equatorward, it is confined by, and compresses, the equatorial magnetic field. Here, we extend

previous, axisymmetric, Grad–Shafranov calculations of the hydromagnetic structure of a mag-

netic mountain up to accreted masses as high as Ma = 6 × 10−4 M�, by importing the output

from previous calculations (which were limited by numerical problems and the formation of

closed bubbles to Ma < 10−4 M�) into the time-dependent, ideal-magnetohydrodynamic code

ZEUS-3D and loading additional mass on to the star dynamically. The rise of buoyant magnetic

bubbles through the accreted layer is observed in these experiments. We also investigate the

stability of the resulting hydromagnetic equilibria by perturbing them in ZEUS-3D. Surprisingly,

it is observed that the equilibria are marginally stable for all Ma � 6 × 10−4 M�; the mountain

oscillates persistently when perturbed, in a combination of Alfvén and acoustic modes, without

appreciable damping or growth, and is therefore not disrupted (apart from a transient Parker

instability initially, which expels <1 per cent of the mass and magnetic flux).

Key words: accretion, accretion discs – stars: magnetic fields – stars: neutron – pulsars:

general.

1 I N T RO D U C T I O N

The magnetic dipole moments μ of neutron stars are observed to

decrease with accreted mass, Ma. Evidence of this trend is found in

a variety of systems, e.g. low- and high-mass X-ray binaries, and

binary radio pulsars with white dwarf and neutron star companions

(Taam & van den Heuvel 1986; Shibazaki et al. 1989; van den Heuvel

& Bitzaraki 1995), although there is some debate over whether the

trend is monotonic (Wijers 1997). Several theoretical mechanisms

have been proposed to explain the μ(Ma) data, including accelerated

Ohmic decay (Urpin & Geppert 1995; Urpin & Konenkov 1997),

fluxoid–vortex interactions (Muslimov & Tsygan 1985; Srinivasan

et al. 1990) and magnetic screening or burial (Bisnovatyi-Kogan &

Komberg 1974; Romani 1990). With regard to the latter mechanism,

Payne & Melatos (2004) (hereafter PM04) calculated a sequence of

two-dimensional, hydromagnetic (Grad–Shafranov) equilibria de-

scribing the structure of the magnetically confined mountain of ma-

terial accreted at the magnetic poles of the neutron star. The moun-

tain is confined by magnetic stresses near the equator, where the

field is compressed (Melatos & Phinney 2001). These solutions are

the first of their kind to explicitly disallow cross-field transport of

material as the mountain evolves from its initial to its final state (cf.

�E-mail: dpayne@physics.unimelb.edu.au

Mouschovias 1974), as required in the ideal-magnetohydrodynamic

(ideal-MHD) limit. PM04 found that μ is screened substantially

above a critical accreted mass Mc ∼ 10−5 M�, well above previ-

ous estimates of Mc � 10−10 M� (Hameury et al. 1983; Brown &

Bildsten 1998; Litwin, Brown & Rosner 2001).

PM04 calculated equilibria up to Ma � 10−4 M�, falling short of

the mass required (∼0.1 M�) to spin up a neutron star to millisec-

ond periods (Burderi et al. 1999). This is supplied by a large class of

mass donors like low-mass X-ray binaries (LMXBs) (Strohmayer

& Bildsten 2006), even given non-conservative mass transfer

(Tauris, van den Heuvel & Savonije 2000). Grad–Shafranov cal-

culations are stymied above Ma ∼ 10−4 M� by physical effects

(e.g. magnetic bubbles form above the stellar surface) and numer-

ical effects (e.g. steep magnetic gradients hinder iterative conver-

gence). In this paper, we extend the μ(Ma) relationship to Ma ∼
10−3 M� by loading equilibria with Ma ∼ 10−4 M� into ZEUS-3D,

a multipurpose time-dependent, ideal-MHD code for astrophysical

fluid dynamics, and adding extra mass quasi-statically through the

outer boundary of the simulation volume.

PM04 also left open the important question of the stability of

the hydromagnetic equilibria. Distorted magnetic configurations,

in which the polar flux is buried beneath the accreted overburden

and compressed into a narrow belt at the magnetic equator, are ex-

pected prima facie to be unstable. Indeed, the Grad–Shafranov anal-

ysis in PM04 hints at the existence of an instability by predicting
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(informally) the existence of magnetic bubbles as steady-state so-

lutions. In this paper, we systematically explore the stability of the

equilibria by evolving them in ZEUS-3D, subject to linear and non-

linear perturbations.

The structure of the paper is as follows. In Section 2, the nec-

essary theory is summarized and the solution method described.

The formalism of PM04 is again used here. The numerical Grad–

Shafranov solver is described in appendix B of PM04 and appendix

C of Mouschovias (1974). In Section 3, we verify ZEUS-3D against a

set of test cases relevant to the problem of magnetic burial; the im-

plementation is described thoroughly in Appendix A. In Section 4,

we explore the late stages of magnetic burial (10−5 � Ma/M� �
10−3) by adding mass quasi-statically to equilibria from PM04 in

ZEUS-3D. In Section 5, we discuss the linear and non-linear stability

of the equilibria in the regime 10−5 � Ma/M� � 10−3. The paper

concludes, in Section 6, with a discussion of the limitations of our

analysis and suggestions for future numerical work.

2 P H Y S I C S O F M AG N E T I C BU R I A L

2.1 Axisymmetric equilibria

During accretion on to a neutron star from a binary companion, mat-

ter piles up on the polar cap, funnelled by the magnetic tension of

the polar magnetic flux tube. Once Ma exceeds ∼10−5 M�, the hy-

drostatic pressure at the base of the accretion column overcomes the

magnetic tension and matter spreads over the stellar surface towards

the equator, dragging along frozen-in polar field lines (PM04). The

distorted magnetic field leads to screening currents which act to

decrease the magnetic dipole moment. Fig. 1(a) illustrates the mag-

(a) (b)

(c) (d)

Figure 1. Hydromagnetic equilibrium for a = 50 (scaled from real stellar

dimensions as discussed in Section 3.3) and Ma/Mc = 0.16, with Gx = Gy =
64, showing (a) magnetic field lines (solid) and density contours (dashed)

and (b) the corresponding mean residual versus iteration number for an

underrelaxation parameter � = 0.99. (c) Final F(ψ) (solid) and initial F(ψ)

(dashed) versus ψ . (d) Magnetic dipole moment (normalized by its surface

value) as a function of altitude above the stellar surface (in units of h0).

netic ‘tutu’ formed for Ma = 10−5 M�, cut-off at 10 density scale-

heights. The polar mountain of accreted material (dashed contours)

and the pinched, flaring, equatorial magnetic belt (solid contours)

are plainly seen.

At first glance, one might expect such equilibria, with their steep

density and magnetic field gradients, to be unstable. Interestingly,

this expectation is largely false, as we show in Section 5. We summa-

rize the key equations and notation of magnetic burial here (PM04).

The steady-state ideal-MHD equations for an isothermal atmo-

sphere (p = c2
s ρ, i.e. adiabatic index γ = 1) reduce to the force equa-

tion ∇p + ρ∇φ − μ0
−1 (∇ ×B) ×B = 0. For an axisymmetric con-

figuration in spherical polar coordinates (r, θ , φ), a flux function ψ(r,

θ ) generates the magnetic field B via B = ∇ψ(r , θ )/(r sin θ ) × êφ .

The flux function satisfies the Grad–Shafranov equation

	2ψ = F ′(ψ) exp
[ − (φ − φ0)/c2

s

]
, (1)

where ρ, p, φ, φ0, cs and 	2 denote the matter density, pressure,

gravitational potential, surface gravitational potential, sound speed

and Grad–Shafranov operator, respectively (PM04). In the limit

h0 = c2
s R2

∗/(GM∗) � R∗, φ = GM∗r/R2
∗, where M∗ is the mass

of the neutron star and R∗ is its radius, mass-flux conservation in

ideal-MHD provides the integral constraint

F(ψ) = c2
s

dM

dψ

×
{

2π

∫
C

ds r sin θ |∇ψ |−1 exp
[ − (φ − φ0)/c2

s

]}−1

.

(2)

We prescribe the mass-flux distribution to be dM/dψ = (Ma/2ψ a)

exp(−ψ/ψ a), where ψ a = ψ∗R∗/Ra is the flux enclosed by the inner

edge of the accretion disc at a distance Ra and ψ∗ is the hemispheric

flux. For the boundary conditions, we fix ψ to be dipolar at r = R∗,

assume north–south symmetry, fix the ψ = 0 field line, and leave

the field free at large r.

Equations (1) and (2) are solved numerically using an iterative

relaxation scheme (Mouschovias 1974; PM04). The mean residual

as a function of iteration number is shown in Fig. 1(b), corresponding

to the Grad–Shafranov equilibrium for m=Ma/Mc =0.16 displayed

in Fig. 1(a). The form of F(ψ), found from (2), varies from Ma = 0

to Ma = 0.16Mc in the manner displayed in Fig. 1(c).

2.2 Critical accreted mass Mc

According to naive estimates based on hydromagnetic force balance

between μ−1
0 (∇ × B) × B and ∇p at the polar cap, the magnetic

field (and hence μ) is distorted appreciably away from its initial

configuration for Ma � Mc ∼ 10−8 M� (Brown & Bildsten 1998;

Litwin et al. 2001). However, self-consistent solutions of (1) and

(2), in which mass does not migrate across flux surfaces and the

back reaction from equatorial magnetic stresses is included (PM04),

predict a larger value of Mc, given by

Mc

M�
= πG M∗ B2

∗ R2
∗/

(
2μ0c4

s M�
)

= 1.2 × 10−4

(
M∗

1.4 M�

) (
R∗

104m

)2

×
(

B∗
108T

)2 (
cs

106 m s−1

)−4

.

(3)

In the regime Ma � Mc, the Green function analysis in PM04 gives

ψ(r , θ ) = ψd(r , θ )[1 − mb2(1 − e−x/h0 )], (4)
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with m = Ma/Mc and b = ψ∗/ψ a. The distorted field lines develop a

large tangential component as mass is added, such that |B | increases

substantially for Ma � Mc/a, with a = R∗/h0.1 The self-consistent

density distribution associated with (4) is given by

ρ(r , θ ) = ρ0 F̃[ψ̃(r , θ )]e−x/h0 (5)

with

F̃(ψ̃) = b

2πa2
exp(−ψ̃)(1 − ψ̃/b)1/2[J (ψ̃)]−1, (6)

where we write F̃ = Fh3
0c2

s /Ma, ρ0 = Ma/h3
0, and ψ̃ = ψ/ψa, and

the form factor satisfies J (ψ̃) ≈ 1 to better than 10 per cent for all θ

except near the equator, 89.5◦ � θ � 90◦ (see fig. A1 of PM04). In

the small-Ma limit, F is calculated by assuming ψ to be dipolar and

evaluating the (small) correction from (1) using Green functions.

2.3 Screening the magnetic dipole

The magnetic dipole moment is defined in terms of the radial com-

ponent of the magnetic field by

μ = 3

4
r 3

∫ 1

−1

d(cos θ ) cos θ Br (r , θ ), (7)

assuming axisymmetry. In the regime Ma � Mc from (4), we obtain

μ/μi = (1 − Ma/Mc), (8)

where μi = ψ∗R∗ is the initial dipole moment. Equation (8) depends

only on m = Ma/Mc, not Ma and Mc individually, just as in (4).

Fig. 1(d) shows how μ decreases as a function of altitude due to

the screening currents within the first few density scaleheights. It is

very important to note that ψ deviates substantially from its dipole

form for Ma/Mc � b−2, whereas μ deviates from μi for Ma/Mc �
1, which occurs at a much later stage of accretion (because b � 1

usually).

3 N U M E R I C A L S I M U L AT I O N S O F M AG N E T I C
BU R I A L

Distorted MHD equilibria like the one pictured in Fig. 1(a) are

notoriously unstable. In this section, we describe how the astro-

physical MHD code ZEUS-3D can be used to investigate the stability

of our equilibria. We discuss the set up of ZEUS-3D in Section 3.1

and Appendix A, some verification experiments in Section 3.2 and

Appendix A, and the curvature rescaling required to render the mag-

netic burial problem tractable in Section 3.3.

3.1 ZEUS-3D

ZEUS-3D is a multipurpose, time-dependent, ideal-MHD code for as-

trophysical fluid dynamics which uses staggered-mesh finite differ-

encing and operator splitting in three dimensions (Stone & Norman

1992a). In this paper, we restrict the dynamics to two dimensions,

disabling the third, but employ a spherical polar grid, appropriate for

an axisymmetric stellar atmosphere. Previous numerical work fo-

cused on the magnetic poles of the accreting star (Brown & Bildsten

1998; Cumming, Zweibel & Bildsten 2001); here, by contrast, equa-

torial magnetic stresses are treated fully by simulating a complete

hemisphere. The density and magnetic field strengths are read into

ZEUS-3D from the output of our Grad–Shafranov code (PM04). The

1 The extra factor of a comes from differentiating ψ with respect to θ .

time-step 	tZ is set by the Courant condition satisfied by the fastest

MHD wave modes. Details regarding the parameters, initial condi-

tions, boundary conditions, verification tests and coordinate choices

in the runs are given in Appendix A.

3.2 Verification

Before implementing the burial problem in ZEUS-3D, we ran a se-

quence of simpler verification cases.

First, we reproduced the classical results for the non-linear evo-

lution of the Parker instability of a plane-parallel field in rectangu-

lar geometry (Mouschovias 1974). We achieved agreement on the

minimum stable wavelength λcrit = 4πh0[B2/(4πp) + 1]−1/2 and

reproduced the final, non-linearly evolved equilibrium state to an

accuracy of 5 per cent.

Secondly, to test spherical coordinates in ZEUS-3D, we studied

the evolution of a spherical isothermal atmosphere containing zero

magnetic field, followed by an atmosphere containing a dipolar mag-

netic field; both of these states are analytic force-free equilibria

[(∇ × B) × B = 0)]. ZEUS-3D confirmed that these are indeed equi-

libria; they do not alter significantly even after several thousand

Alfvén times. The condition at the outer boundary r = rm is chosen

to suit the problem at hand. The outflow condition leaves the mag-

netic field free but allows some mass loss, which we minimize by

keeping rm large, to prevent the atmosphere from evaporating over

long time-scales. The inflow condition artificially pins the magnetic

field, thereby introducing a radial magnetic field at the outer bound-

ary which increases μ artificially when integrated at rm. It is used

at an intermediate stage in the bootstrap algorithm (described in

Section 4.2) when adding mass in the Ma � Mc regime.

3.3 Curvature rescaling

The characteristic radial (h0) and latitudinal (R∗) length-scales are

very different in a neutron star, creating numerical difficulties which

must be handled by rescaling the problem. For a typical neutron star

with cs = 106 m s−1 (Brown & Bildsten 1998), we find h0 = 0.54 m,

a = R∗/h0 = 1.9 × 104 and τ 0 = h0/cs = 5.4 × 10−7 s, where τ 0 is

the sound crossing time over a hydrostatic scaleheight.

Two input parameters are varied in the simulations: Ma and b. In

the regime Ma � Mc, where (4) holds, ψ and consequently μ depend

only on m = Ma/Mc and not explicitly on Ma, suggesting that we can

artificially reduce a = R∗/h0 by reducing M∗ and R∗, as long as we

keep h0 ∝ R2
∗/M∗ fixed. This has the advantage that the minimum

density increases as a decreases (because the atmosphere extends

further), decreasing the Alfvén speed and hence increasing the ZEUS-

3D time-step 	tZ. We set a = 50, a good compromise that ensures

a � 1 (as for a realistic star) while keeping the computational burden

reasonable. This choice corresponds to a model star with M′
∗ =

10−5 M� and R′
∗ = 27 m. Our numerical results confirm that μ is

independent of a (see Section 4.1), as predicted analytically. This

is illustrated in Fig. 2, where μ(Ma) is plotted for several a values;

even for Ma < Mc, the deviations are less than 10 per cent.

Our ZEUS-3D grid reaches an altitude xm = rm − R∗ = 10 h0 (cf.

>103 h0 in PM04). We adopt a restricted domain for two reasons: (i)

to maximize grid resolution near the surface of the star, where gradi-

ents are steepest; and (ii) to stop the time-step, 	tZ, from becoming

so small that run time and numerical dissipation become excessive

(as discussed in Appendix A). According to the Courant condition,

	tZ scales as v−1
A,max ∝ ρmin ∝ e−xm/h0 . Note that the pole-to-equator

sound and Alfvén crossing times (ah0/cs and ah0/vA, respectively)

also decrease as a decreases.
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Figure 2. Magnetic dipole moment, μ, as a function of accreted mass, m =
Ma/Mc, for b = Ra/R∗ = 3 and a = R∗/h0 = 1.86 × 104 (crosses), a = 50

(triangles), a = 100 (pluses), a = 500 (diamonds), all found with the Grad–

Shafranov code and a = 50 with mass added through the outer boundary in

ZEUS-3D (squares).

4 L AT E S TAG E S O F M AG N E T I C BU R I A L
( Ma � Mc)

In this section, we investigate the evolution in time of the highly

distorted Grad–Shafranov equilibria that arise for Ma � Mc ∼
10−4 M�. We aim to answer a question on which the Grad–

Shafranov analysis is silent: what happens when significantly more

than 10−4 M� is accreted at a rate that is slow compared with the

Alfvén time and instability oscillation period (see Section 5)? To do

this, we employ the bootstrap approach described in Section 4.2.

4.1 μ versus Ma

Our numerical results confirm that the magnetic dipole moment is

essentially independent of a = R∗/h0. Fig. 2 displays μ(Ma) for

several a values, with Ma > Mc achieved by adding mass through

the outer boundary of the simulation box (squares). As predicted

analytically, there is negligible dependence on a for Ma < Mc. For

Ma > Mc, deviations of less than a factor of 2 occur. The outer

boundary condition (radial B) artificially increases μ, integrated at

xm = 10h0, by about 10 per cent; this is considered further below

[see Fig. 3(f), where μ is plotted as a function of altitude x (dotted

curve) for m = 0.16]. Hence the magnetic dipole moment plotted in

Fig. 2 is an upper bound.

Errors are �1 per cent when compared against other runs with

xm > 10h0. For example, for m = 0.16 and Gx = Gy = 128, the

minimum dipole moment is 0.8695 at x̃m = 10 and 0.8555 at x̃m =
20. (A 64 × 64 grid gives similar results, e.g. μ= 0.875 at x̃m = 10.)

4.2 Bootstrap accretion: Ma � Mc

The data in Fig. 2 extend to Ma ≈ 5Mc, yet the Grad–Shafranov

code only produces equilibria for Ma � 10−4 M�, and breaks down

when magnetic bubbles first appear at Ma � Mcb−1 (Section 4.3).

This state of affairs is unsatisfactory because, in many real accreting

systems (e.g. LMXBs), Ma exceeds substantially the critical mass

for bubbles to form (Taam & van den Heuvel 1986; van den Heuvel

& Bitzaraki 1995). For such systems, the previous calculations are

useful for the early stages of accretion, at τa = Ma/Ṁa � 104b−1yr,

but teach us little about the final stages of accretion and hence the

relic magnetic structure once accretion stops.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Magnetic field evolution with mass added to the outer boundary.

(a), (c), (e): Magnetic field lines (solid) and density contours (dashed) for t =
0, 500, 2000, corresponding to m = 0.16, 0.22, 0.4, respectively. (b) Dipole

moment as a function of time, measured at 3-m above the stellar surface. (d)

Quadrupole moment as a function of time. (f) Dipole moment as a function

of height for t = 0 (dotted), 500 (dashed) and 2000 (solid).

In this section, we perform a numerical experiment to address this

issue. We begin with a hydromagnetic equilibrium configuration for

ρ and ψ where Ma is just below the critical value for bubbles, calcu-

lated using the previous Grad–Shafranov method (PM04). We load

this configuration into ZEUS-3D. We then add mass on the polar flux

tube 0 � ψ � ψ a, at a rate slower than all the hydromagnetic time-

scales involved in the process of coming to equilibrium (including

the Alfvén time-scale and the period of the global Parker oscillations

discussed in Section 5), but at a rate faster than the true accretion

rate Ṁa (so as to make the computation tractable). We then see what

final magnetic structure we get after a realistic amount of mass is

accreted, e.g. Ma ∼ 0.1 M� for LMXBs.

This approach does not track properly any processes that operate

on time-scales between τA and τA, such as Hall drift (Cumming,

Arras & Zweibel 2004) and Ohmic diffusion (Romani 1990). How-

ever, it does model all time-dependent ideal-MHD effects in the con-

text of polar magnetic burial for the first time. Note that this experi-

ment would be completely impractical without the Grad–Shafranov
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Illustration of one step in the bootstrapping algorithm. Magnetic

field lines (solid) and density contours (dashed) (left) and the magnetic dipole

moment as a function of height (right) for m = 1.6 at t = 0 (top), m = 2.2 at

t = 100 (middle), reached by adding mass at the outer boundary, and m =
4.1 at t = 400 (bottom).

equilibria previously computed for Mab � 10−4 M� (PM04), be-

cause the separation of the hydromagnetic and accretion time-scales

is too great if one starts from Ma = 0, even when the accretion is

accelerated artificially.

Fig. 4 illustrates one bootstrapping cycle; it is also a good illustra-

tion of the dynamics of magnetic burial for Ma � Mc. Starting from

a steady-state equilibrium with m = 1.6, we add mass to the outer

boundary, with inflow boundary conditions. The magnetic field lines

are tied to the outer boundary by this condition in ZEUS-3D, prevent-

ing μ from decreasing there and raising μ artificially closer to the

star. To overcome this, we change the outer boundary condition from

inflow (B pinned) to outflow (B free) after adding progressively more

mass through the polar flux tube, with Ṁa(θ ) = Ṁa,maxe−b sin2 θ and

Ṁa,max ≈ 2 × 10−6 M�/τ0 when scaled up from the model (a =
50) to a realistic neutron star. Mass falls along field lines [Fig. 4(a)]

towards the stellar surface and flattens the equatorial ‘tutu’, until

the magnetic tension matches the hydrostatic pressure. Matter sub-

Figure 5. Evolution of the magnetic dipole moment, as measured 1.5-m

above the stellar surface (left-hand panel), and the mass ellipticity (right-

hand panel), when mass is added to a m = 0.16 equilibrium.

sequently flows equatorward, dragging magnetic field lines with it

[Fig. 4(c)]. Superposed on this process are sound and Alfvén os-

cillations, which are discussed in Section 5; they cause wiggles in

the field lines, visible above the spreading matter (2–3 m above the

surface). The oscillations show up clearly in the time evolution of

the magnetic dipole moment, and mass quadrupole moment, plot-

ted in Fig. 5. [Further discussion of the mass distribution appears

in Melatos & Payne (2005).] Finally, the mass inflow is stopped

and the outer boundary condition is switched to outflow, allowing

the magnetic field lines to relax [Fig. 4(e)]. The configuration in

Fig. 4(e) becomes the initial state for further mass to be added.

The dipole moment attained after adding a total of 3 × 10−4 M�
on a 128 × 128 grid is shown in Fig. 6 as a function of altitude. We

find that a minimum dipole moment of ≈3 × 10−3 times the surface

value is obtained for m = 4.76 at an altitude ∼h0. Smaller dipole

moments are expected for larger Ma, but numerical constraints pre-

vented us from improving the grid resolution nearer the equator

sufficiently to see this.

One might be tempted to ask whether the intermediate step of

relaxing the field at rm is really necessary. It is, and Figs 3 and 4

illustrate why. If too much mass is added, it is found numerically that

the field lines break off the underlying magnetic dipole and, when

allowed to relax, remain pinned to the outer boundary. Fig. 5 shows

μ as a function of time, measured ∼1.5 m above the stellar surface

where the spreading mostly occurs. μ reaches a minimum after

∼100τ 0, even when more mass is added, because of line-tying at

rm. Adding more mass is ineffective because closed magnetic loops

Figure 6. Dipole moment versus altitude when mass is added to the config-

uration in Fig. 4(c), at t = 0 (dotted), t = 100 (dashed) and t = 500 (solid),

corresponding to m = 2.23, 2.86 and 4.76, respectively.
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Figure 7. Left-hand panel: magnetic field lines (solid) and density contours

(dashed) when mass is added to a m = 0.16 equilibrium, reaching m = 4.1 at

t = 400. Right-hand panel: magnetic dipole moment as a function of altitude

when the m = 4.1 configuration at t = 0 (dotted) relaxes in the presence of an

outflow outer boundary condition, at t = 500 (dashed) and t = 900 (solid).

form. They are apparent in Fig. 7, which shows the configuration at

t = 400 (starting from the m = 1.6 equilibrium). This configuration

cannot be used as the initial state for the next bootstrapping iteration

because the magnetic field lines remain fixed at the outer boundary.

To validate the bootstrapping method, we take an equilibrium that

is free of magnetic bubbles (i.e. m � 1) and add mass up to a value

of Ma for which the Grad–Shafranov equilibrium is already known.

Generally speaking, we reproduce the Grad–Shafranov value of μ

to an accuracy of 5 per cent.

Fig. 3 shows the results of such a test, beginning with m =
0.16 and adding mass at a rate Ṁa(θ ) = Ṁa,maxe−b sin2 θ , with

Ṁa,max ≈ 7 × 10−8 M�/τ0. We point out several important fea-

tures. (i) The initial μ in Fig. 3(f) rises towards the outer boundary

(see Section 3.2). (ii) μ is unchanged at the outer boundary, because

the magnetic field lines are tied there by the flux-freezing condi-

tion, to accommodate the inflowing mass. The magnetic field lines

bend towards the equator, and μ decreases closer to the stellar sur-

face. (iii) Closer to the surface, μ reaches a minimum within 5 per

cent of that obtained from the Grad–Shafranov equilibrium. (iv) The

kinks apparent in the magnetic field lines are a result of numerical

dissipation on the grid scale.

4.3 Bubbles

When the Grad–Shafranov equation is solved with ψ free

(Neumann) at the outer boundary, closed bubbles of magnetic field,

disconnected from the inner (Dirichlet) boundary, can arise (PM04)

for Ma �1.6 Mc b−1. Physically, they are generated when the toroidal

screening current exceeds a threshold. However, the field lines are

deformed continuously from a simply connected initial state (e.g. a

dipole, or something close to it is the best guess for a typical neutron

star) in ideal-MHD. Therefore, the bubbles are not realizable in an

accreting neutron star even though they are admissible mathematical

solutions to the steady-state boundary-value problem. Instead, the

bubbles point to a loss of equilibrium, analogous to that which oc-

curs during eruptive solar phenomena (Klimchuk & Sturrock 1989),

where no simply connected hydromagnetic equilibrium exists. In the

language of the Grad–Shafranov analysis in Section 2, the source

term ∝ F′(ψ) in (1) increases with Ma b, boosting 	2ψ and creating

flux surfaces with ψ < 0 or ψ > ψ∗, which cannot connect to the

star and either form closed loops or are anchored at infinity (here,

the accretion disc).

How does a bubble evolve in ZEUS-3D? We import a Grad–

Shafranov equilibrium for Ma = 1.6Mc into ZEUS-3D, retaining the

(a) (b)

(c) (d)

Figure 8. Evolution of a bubble [found initially in the region 3 � x �
5 m, 0.2 � cos (θ ) � 0.5 in (a)] with m = 1.6 initially, after the density is

increased uniformly to m = 3.2 at t = 0. Snapshots are plotted at (a) t = 0,

(b) t = 3, (c) t = 6, (d) t = 9.

self-consistent density ρ = F[ψ(r , θ )]e−x/h0 in the region 0 � ψ �
ψ∗ but replacing it with an isothermal atmosphere inside the bubble

(ψ < 0 and ψ > ψ∗), where strict flux-freezing would imply ρ =
0 (matter cannot enter without crossing flux surfaces). Fig. 8 shows

part of the evolution for m = 1.6. The bubble rises to rm, during the

first Alfvén oscillation of the magnetosphere, at the Alfvén speed.

During the bubble’s rise, 0.5 per cent of the accreted mass (4.4 ×
10−7 M� when converted to realistic neutron star parameters; see

Appendix A) is ejected through the outer boundary in one Alfvén

time. This compares with thermal evaporation of less than 0.001 per

cent in the same time, which occurs naturally given outflow bound-

ary conditions (see Appendix A). For m > 1.6, the bubble oscillates

about an equilibrium point rather than rising buoyantly.

4.4 Uniform density increase

Another route to computing equilibria with Ma > 10−4 M� is to start

from a bubble-free Grad–Shafranov equilibrium with Ma < Mc and

increase the density uniformly across the grid by some factor (usu-

ally �1), while leaving the magnetic field unchanged. If we start

from the initial dipole (Ma = 0), this kind of numerical experiment

is badly controlled; it leads to excessive numerical dissipation and

mass loss through r = rm. However, if we start from Ma ∼ 10−5 M�,

the readjustment is gentler. During the early stages of the readjust-

ment, some classic instances of the Parker instability are observed.

For example, Fig. 9 shows how the initial state for m = 1.12 evolves

after the density is increased five-fold uniformly to m = 5.6. The

magnetic field component Bθ is compressed in the r direction on an

Alfvén time-scale – ripe conditions for the Parker instability. The

blistering becomes clear after 160 Alfvén times (third frame). After
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Figure 9. Evolution of the Parker instability for Ma = 1.12Mc with the

density increased uniformly across the grid by a factor of 5. Snapshots of the

magnetic field lines are shown at t = 0, 120, 160, 200, 240 and 280 Alfvén

times (top left to bottom right).

280 Alfvén times, the material settles down to a new equilibrium.

Importantly, negligible mass and magnetic flux (less than 1 per cent

of the total) is lost through this blistering.

The magnetic dipole moment μ, plotted in Fig. 10, settles down

to ≈0.06μi. This is larger than we expect for m = 5.6, given that

we found μ(m = 4.7) < 0.01 using the bootstrapping method. Two

factors explain this: (i) the sudden density increase does not allow

the magnetic field and matter to gradually find their equilibria, and

(ii) flux-freezing is violated by increasing the density as above. This

method can be used in conjunction with bootstrapping with less

severe density increases (factor of �5).

4.5 Size of the polar cap

In our numerical experiments, we choose the polar cap radius to

be relatively large because (i) it helps the Grad–Shafranov solution

converge numerically while still capturing the essential idea of a

polar mountain, (ii) it raises the minimum density ρmin ∝ e−b on

the grid, preventing 	tZ from becoming too small via the Courant

condition, and (iii) in a real star, the polar plasma flow can spread

Figure 10. Magnetic dipole moment as a function of time during the blis-

tering of the Parker instability displayed in Fig. 9.

due to Rayleigh–Taylor and Kelvin–Helmholtz instabilities (Arons

et al. 1984). We have not managed to get ZEUS-3D running for b �
3. For b = 3 and 5, μ reaches an equilibrium value in a few hundred

Alfvén times, and the oscillation frequencies are roughly the same,

with μ/μi → 0.85, 0.82 for b = 3, 5 as t → inf.

4.6 Equatorial magnetic belt

Melatos & Phinney (2001) predicted that the magnetic field at the

equator intensifies during magnetic burial, if magnetic flux is con-

served. The results presented here confirm this. As seen in Fig. 1(a),

the magnetic field is ‘combed’ away from the pole, and flattened

against the stellar surface towards the equator, increasing Bθ at the

expense of Br. The maximum magnetic field strength, Bmax, is given

as a function of Ma in Payne & Melatos (2006b). Note that the ana-

lytic approximation in the limit of small Ma captures the equatorial

belt provided that J(ψ) is calculated properly (PM04).

5 S TA B I L I T Y

In this section, we investigate whether the Grad–Shafranov equi-

libria of magnetically confined mountains calculated in this paper

(Ma � Mc) and PM04 (Ma � Mc) are stable to small and large per-

turbations. To do this, we load the numerical output from our Grad–

Shafranov code into ZEUS-3D, evolve it forward in time, and report

on the nature of any instabilities observed. In ideal-MHD, any insta-

bilities manifest themselves as slow, Alfvén, or fast magnetosonic

waves, modified by buoyancy effects in a stratified medium.

We explore the stability of the system in the context of three nu-

merical experiments: (i) we test how the small perturbation evolves,

which arises from the numerical error in converting from the Grad–

Shafranov to the ZEUS-3D grid (Sections 5.1, 5.2 and 5.4); (ii) we

consider the fate of large perturbations (Section 5.5); and (iii) we

compare the evolution in ZEUS-3D with the convergence of the Grad–

Shafranov algorithm.

5.1 Linear stability: numerical experiment

Equilibria of the kind depicted in Fig. 1(a), where the magnetic

field is markedly distorted, are normally expected to be unstable.

To assess this here, we track separately the evolution of Wg, Wk and

WB, the gravitational, kinetic and magnetic energies, respectively,

as the magnetic mountain evolves in ZEUS-3D. The total energy is
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Figure 11. Kinetic (solid), magnetic (dashed) and gravitational potential

(dotted) energies, normalized to their maximum values as a function of time

for m = 1.6, Gx = Gy = 128.

given by

W = WB + Wg + Wk,

where we define

Wg =
∫

d3x ρφ, Wk =
∫

d3x (ρv2/2)

and

WB =
∫

d3x
(

B2/2μ0

)
.

Key observables of the system, such as the magnetic dipole moment

μ, defined in (7), and the mass ellipticity ε, are also tracked. We

do not plot the total thermal energy Wp = ∫
d3x P log P in what

follows because ZEUS-3D holds it constant during isothermal (but

not adiabatic) runs.

We begin, as an example, with the equilibrium for m = 1.6

[Fig. 4(a)], our starting point for adding mass through the outer

boundary in Section 4.2. Fig. 11 displays Wg, Wk and WB a function

of t for this case. The energies are normalized by their maximum

values so that the energy exchanges are clear, because their absolute

values differ by several orders of magnitude: Wg dominates, with

WB = 3.7 × 10−3Wg and Wk = 4.2 × 10−5Wg initially. After 300τA,

we obtain WB = 3.4 × 10−3Wg and Wk = 1.2 × 10−5Wg.

The evolution proceeds as follows. The equilibrium state im-

ported into ZEUS-3D is not exact due to grid resolution, imperfect

convergence in the Grad–Shafranov code, and numerical discrep-

ancies when translating between the Grad–Shafranov and ZEUS-3D

grids (see Appendix A). Initially, during the first oscillation, Wg and

WB are converted to Wk. When the oscillation overshoots, the energy

flow reverses direction. In ideal-MHD, where there is no dissipation,

the oscillation persists. In ZEUS-3D, where there is some numerical

dissipation and energy is radiated by hydromagnetic waves through

the outer boundary, the oscillations are damped, as in Fig. 11. How-

ever, this damping is slow. (Experiments demonstrating this numer-

ical dissipation are reported in Appendix A.) Note that Wk oscillates

at twice the frequency of Wg and WB, because the leading term in

Wk is quadratic in perturbed quantities (∝ δv2), whereas Wg(∝ δρ)

and WB(∝ BδB) are linear.

The dipole moment, normalized to its value at the stellar surface,

is plotted in Fig. 12 for m = 1.6. The oscillation period equals that

of WB for the reason above. The kinks in the curve occur when the

Figure 12. Magnetic dipole moment normalized to its surface value, plotted

as a function of time for m = 1.6, Gx = Gy = 128.

magnetic field reflects off the boundaries at the pole and equator.

The oscillations are identified as acoustic modes (see Section 5.2).

5.2 Global MHD oscillations

We explore here the physical nature of the oscillations resulting

from small perturbations to the hydromagnetic equilibria and how

their amplitude and period depend on Ma.

Fig. 13 shows the time evolution of μ and mass ellipticity for

several Ma values and logarithmic scaling of the altitude. For refer-

ence and numerical comparison, the results for a linear scaling in

altitude are shown in Fig. 14. The key result is that the equilibria are

marginally stable: the buried field is not disrupted significantly, but

the configuration oscillates about its equilibrium state. Two modes

are clearly present: (i) a short period oscillation, with fixed period

13τ 0 for all Ma (and thus ρ), which is an acoustic mode with velocity

cs; and (ii) a longer period oscillation, with period increasing with

Ma as displayed in Fig. 15, which is an Alfvén mode. The Alfvén

oscillation frequency is fitted by

fA ≈ 0.003τ−1
0 (Ma/Mc)

−1/2 Hz (9)

for a = 50, which, when scaled to a realistic neutron star, yields

fA ≈ 17(Ma/Mc)
−1/2 Hz. (10)

There are a few numerical considerations. The magnetic dipole

moment artificially rises from its equilibrium value towards the sur-

face value for 0.2 � m � 1.6 under the following conditions. (i)

There is insufficient resolution close to the stellar surface, e.g. a

linear grid in r with Gx = 128 is not good enough. A compari-

son of Figs 13 (logarithmic r grid) and 14 (linear r grid) brings

out this point. μ and the quadrupole moment exhibit oscillations,

whose amplitude grows and whose mean varies for a linear grid,

whereas the amplitude is damped and the mean remains constant

for a logarithmic grid. (ii) The outer boundary condition is set to

outflow, leading to a small amount of mass loss. While the mass

loss amounts to �2 per cent by t = 103, it allows the field lines at

the magnetic equator to flare up towards the pole and destabilize the

equilibrium. These problems are overcome by (i) using a logarith-

mic scale in r to increase the grid resolution near the stellar surface,

(ii) managing carefully the translation from logarithmic scaling in

the Grad–Shafranov grid to the ZEUS-3D grid (see Appendix A), and

(iii) setting the outer boundary condition to inflow.
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Figure 13. Magnetic dipole moment (top) and mass quadrupole moment

(bottom) as a function of time for Ma/Mc = 0.053, 0.16, 0.32, 0.48, 0.64,

0.8, 0.96, 1.12, 1.6, 2.4, 3.2 and 4.0 (top to bottom for μ, and bottom to top

for the quadrupole moment). Grid resolution: Gx,y = 128, with logarithmic

scaling in altitude.

5.3 Identifying MHD modes

To classify the oscillation modes discovered in the previous section,

we need the dispersion relation of small-amplitude MHD waves

in the limit (verified by the simulations) where the wavelength of

the ρ and B perturbations is small compared with |ρ|/|∇ρ| and

|ψ |/|∇ψ |. The force equation governs stability: intuitively, if a fluid

(Lagrangian) displacement ξ creates a force F in the opposite di-

rection, equilibrium tends to be restored and the system is stable.

Upon analysing the perturbation in Fourier modes, ξ(r , t) ∝ ξ (k,

ω)e−i(k·r−ωt), the force equation reads

ρ0ω
2ξ = −c2

s ρ0kk · ξ(k, ω) + μ−1
0 [[[{k × [k × (ξ × B0)]} × B0]]].

(11)

In the Wentzel–Kramers–Brillouin (WKB) limit k � |∇ψ |/|ψ |,
the dispersion relation (11) supports two modes: shear Alfvén waves,

with

ω2 = k2
‖v

2
A, (12)

and fast (+) and slow (−) magnetosonic waves, with

ω2 = 1
2
k2

(
c2

s + v2
A

)
[1 ± (1 − δ)1/2] (13)

Figure 14. Magnetic dipole moment (top) and mass quadrupole moment

(bottom) as a function of time for Ma/Mc = 0.053, 0.16, 0.32, 0.48, 0.64,

0.96, 1.12 (top to bottom for μ, and bottom to top for the quadrupole mo-

ment). Grid resolution: Gx,y = 64, with linear scaling in altitude.

Figure 15. Oscillation period (in units of the Alfvén time) as a function

of Ma, with linear (crosses) and logarithmic (diamonds) grid sampling in

altitude. The Alfvén period is well fit by 300τ 0(Ma/Mc)1/2. The period

of the sound mode (triangles) is also plotted. Note that τ 0 is defined at a

particular value of Ma.

and

δ = 4k2
‖c2

s v
2
A

k2
(

c2
s + v2

A

)2
. (14)
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Figure 16. Magnetic dipole moment as a function of time in ZEUS-3D (solid)

and as a function of iteration number in the Grad–Shafranov code with

underrelaxation parameter � = 0.99 (dashed).

The shear Alfvén wave is incompressible (k · ξ = 0). It propagates

analogously to a transverse wave along a string under tension, the

magnetic field lines playing the role of the string.

Let us denote the right-hand side of (11) by F(ξ). The operator

ρ−1 F is linear. It can be shown [see p. 244 of Goedbloed & Poedts

(2004) for a proof] that in ideal-MHD, the operator ρ−1 F is also self-

adjoint, so that the eigenvalues ω2 in (11) are real (making ω either

real or purely imaginary). Two classes of solution occur: (i) stable

pure waves (ω2 > 0) and (ii) exponentially growing instabilities

(ω2 < 0). There are no damped oscillations in ideal-MHD, even in

a non-uniform background; any dissipation observed is numerical.

A full theoretical calculation of the two-dimensional stability is

beyond the scope of this paper. However, we attempt to interpret

the numerical results displayed in equations (9) and (10) in terms

of known results for a gravitating, magnetized slab (Goedbloed &

Poedts 2004). We assume that the slab is infinite and homogeneous

in the y- and z-directions, contained between two planes at x = x1

and x = x2; that the equilibrium ρ and ψ vary in the x-direction;

and that the excited modes satisfy the boundary conditions ξx (x1) =
ξx (x2) = 0. The results for a slab provide insight into the oscillation

modes of a neutron star’s magnetosphere, where the above boundary

conditions are well satisfied due to a combination of line tying at

r = R∗ and stratification at all r (the component of ξ perpendicular

to equipotential surfaces is small). Working with coordinates in a

field-line projection, the Alfvén and slow continuum frequencies

are estimated to be (Goedbloed & Poedts 2004)

ω2
A = 4πμ−1

0 ρ−1 F2, ω2
S = 4πμ−1

0

γ p

γ p + 4πμ−1
0 B2

ρ−1 F2 (15)

with F = −iB · ∇. From our numerical simulations, we find empir-

ically that ≈1/2 wavelength of the dominant oscillation mode fits

within one quadrant, yielding radial and latitudinal wavenumbers

∼2/R∗. This gives F ∼ 2Bmax/R∗ and thus ω2
A = 4B2

max/(R2
∗ρmax),

using the maximum magnetic field strength and density as charac-

teristic values. Empirically, from our simulations, we find Bmax ≈
109 T for Ma = Mc, ρmax ≈ 1013(Ma/Mc) kg m−3, and hence f A =
ωA/(2π) = 32(Ma/Mc)

−1/2 Hz. This scales the same way as the

numerical result f A = 17(Ma/Mc)
−1/2 Hz but is larger, due to

the crudeness of our slab approximation and numerical estimates.

The plasma varies with density (and Ma) from being high-β at the

stellar surface to low-β far from the star, given that cs is uniform

where the mass is concentrated and the waves are launched.

Fig. 15 shows the oscillation period as a function of m. When

analysing the MHD evolution, we extract the period of the waves

by Fourier analysis in order to distinguish which modes are ex-

cited. For the Alfvén mode, as the average density increases (with

m), vA ∝ M−1/2
a decreases, and thus the oscillation period in-

creases. The Alfvén period (in units of the Alfvén time) is fitted

by 300τ 0(Ma/Mc)
−1/2. The period of the acoustic mode remains

constant throughout all the simulations we perform.

5.4 Transient Parker instability

In the experiments described in Section 4.4, it is observed that in-

creasing the density uniformly by a factor of �4 causes Parker insta-

bilities to occur. Fig. 9 consists of a sequence of frames illustrating

the evolution of the Parker instability for an equilibrium state whose

density is uniformly increased five-fold. The wavelength λ of the

instability subtends ≈1 rad, i.e. λ ≈ 0.3R∗. The radial density profile

is exponential, while the magnetic field is mostly confined to a layer

of thickness ∼h0, directed perpendicular to ∇P. This is the classic

situation in which Parker instabilities are expected (Mouschovias

1974).

The evolution of μ, as measured at x = 10h0, is displayed in

Fig. 10. Note that, after the Parker blister subsides, μ returns to

its original value. The equilibrium is not disrupted permanently;

indeed, less than ∼1 per cent of the accreted layer and frozen-in

magnetic flux are expelled from the simulation domain. In this re-

spect, the instability can be considered transient.

The Grad–Shafranov equilibria imported from PM04 are gen-

erated by an algorithm that can follow, by successive relaxation,

the full non-linear evolution of the Parker instability (Parker 1966;

Mouschovias 1974). Therefore it is unsurprising that the equilib-

ria are stable; the relaxation algorithm evolves the magnetic field

quasi-statically through a sequence of intermediate ‘states’ quite

close to those that the real solution to the time-dependent MHD

equations would pass through. True, the final state is distorted, and

one might ask why the buoyancy of the compressed magnetic flux

does not drive long-wavelength, slow MHD modes that overturn

the accreted matter on the Alfvén time-scale — something that does

not occur in the ZEUS-3D runs (except for the transient in Fig. 9).

The explanation is that the equatorial magnetic ‘tutu’ represents the

end state of a Parker instability that occurs quasi-statically as we

add material. The tutu is the analogue of the stable magnetic ‘blis-

ters’ which form when the plane-parallel Parker instability saturates,

while the polar mountain is the analogue of the material that drains

into the magnetic valleys.

To test the assertion (PM04) that the iterative solution of the

Grad–Shafranov equation coupled to a flux-freezing condition pro-

vides a good proxy for the true time-dependent behaviour, we begin

with a magnetic dipole with excess mass loaded into the polar flux

tube in both the Grad–Shafranov code and ZEUS-3D. In ZEUS-3D,

this is effectively the same as applying a uniform density increase

(Section 4.4) to the m = 0 equilibrium, ending up with m = 1.6

in this example. We plot μ as a function of time (ZEUS-3D) and it-

eration number (Grad–Shafranov) in Fig. 16. An underrelaxation

parameter � = 0.99 is selected by trial and error to give a com-

parable rate of convergence in the two codes. The initial progress

to equilibrium is similar in both cases. However, after 100 itera-

tions (or equivalently t � 100), μ fluctuates more in ZEUS-3D than in

the converging Grad–Shafranov code. In ZEUS-3D, the added mass

initially squashes the field into a layer ∼1/4 the thickness of the

equilibrium layer [Fig. 4(a)]. The field then bounces back and tran-

sient Parker-like instabilities occur, as we expect (ρ increases by

a factor of �4). This is best illustrated in Fig. 17, which shows a
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(a) (b)

Figure 17. Magnetic field lines (solid) and density contours (dashed) for

t = 100 in ZEUS-3D (left) and the 100th iteration in the Grad–Shafranov code

(right). The initial state is a magnetic dipole with excess mass (m = 1.6) in

the polar flux tubes (ψ∗/ψa = 3).

snapshot of the configurations at t = 100 (in ZEUS-3D) and iteration

100 (in the Grad–Shafranov code). Note that how the field lines

are bent by the transient instabilities in ZEUS-3D but remain smooth

in the Grad–Shafranov code. This comparison also illustrates why

Grad–Shafranov equilibria are a necessary starting point for ZEUS-

3D when aiming to reach stable equilibria for large Ma � 10−4 M�.

Note that the convergence-matching shown here is not a proof of

the stability of the equilibria (Asseo et al. 1978).

5.5 Large perturbations

Next, we investigate what happens when the Grad–Shafranov equi-

libria are perturbed far from equilibrium, i.e. δB/B ∼ 1; the pertur-

bations considered thus far are small, arising mainly from imperfect

translation between the grids of the two codes.

We perturb the magnetic field, while simultaneously respecting

the boundary conditions, by setting

B �→ B{1 + δ sin[π(r − R∗)/(rm − R∗)] sin θ}. (16)

Fig. 18(a) shows the fate of this perturbation for different amplitudes

δ. Note that the perturbation does not strictly respect flux-freezing

because it changes dM/dψ slightly. None the less, even for signif-

icant perturbations, the equilibria are not disrupted – a significant

and robust result. For δ < 0.2, μ settles back to within 20 per cent of

its initial value. For δ > 0.2, μ does not settle back to its initial value,

but it does settle down to some steady value. Again, line-tying plays

a key role in conferring such exceptional stability on the system.

The evolution also depends on the sign of δ. The perturbation is a

low-order spatial mode (in r and θ ) and either compresses (δ > 0)

or relaxes (δ < 0) the magnetic field, with compression causing a

back reaction which increases μ (as can be seen in Fig. 18).

The above perturbation (16) induces an effective redistribution of

mass in flux tubes. To avoid this, we perturb the magnetic potential

ψ in the Grad–Shafranov code according to

ψ �→ ψ{1 + δ sin[π(r − R∗)/(rm − R∗)] sin θ} (17)

and iterate once to calculate ρ self-consistently without changing

dM/dψ , so that the above mass redistribution is performed self-

consistently. We then load the self-consistent perturbed equilibrium

into ZEUS-3D as before. The results are shown in Fig. 18(b). For a

given δ, the amplitude of the oscillations is reduced, confirming that

the mass redistribution contributes to the back reaction. The main

effect is to bring the final value of μ closer to its initial value for

Figure 18. Top panel: magnetic dipole moment as a function of time for

perturbation amplitudes δ = −1.0, −0.5, −0.25, 0, 0.25, 0.5, 1.0 (bottom to

top), when the magnetic field is perturbed as described in (16) but ρ is not

altered. Bottom panel: as above, but with the magnetic field perturbed via

(17) and then iterated once through the Grad–Shafranov code to obtain the

self-consistent ρ, for δ = −0.2, −0.1, 0, 0.1, 0.25, 0.5 (bottom to top).

δ � 0.5. The evolution still depends on the sign of δ, suggesting that

mass-flux redistribution remains somewhat important.

6 C O N C L U S I O N S

We find that, when the MHD equilibria computed in PM04 are

perturbed, they are marginally stable. The magnetic field remains

essentially undisrupted, with the exception of transients that expel

a tiny fraction of flux and matter. MHD oscillations, including both

acoustic and Alfvén modes, cause μ and ε to oscillate about their

mean values. Using ZEUS-3D, we extend the results of PM04 to

larger Ma in two ways. (i) We add mass through the outer boundary

at an artificially accelerated rate which is still slow compared to the

MHD equilibration time-scale and oscillation period (as in a real

neutron star). We use a bootstrapping method in which the mass

is progressively added then allowed to settle to equilibrium. (ii)

We increase the density instantaneously uniformly, and then allow

the configuration to settle to equilibrium. The equilibria we obtain

are stable to Parker modes, as one might expect given that they are

the output of a Grad–Shafranov code which follows the full non-

linear evolution of Parker instabilities.

The existence of stable magnetic mountains with persistent (albeit

oscillating) mass quadrupole moments (ε �10−6) raises the prospect

that accreting millisecond pulsars (Wijnands & van der Klis 1998)
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are sources of gravitational radiation. This application is pursued in

Melatos & Payne (2005) and Payne & Melatos (2006a). Likewise,

the existence of a stable equatorial magnetic belt of intense magnetic

field, with its ability to impede thermal transport, has interesting

implications for the persistence of millisecond oscillations in the

tails of type I thermonuclear X-ray bursts in LMXBs (Muno, Özel &

Chakrabarty 2002). This application is pursued in Payne & Melatos

(2006b).

6.1 Limitations

The work presented above and in PM04 can be generalized by re-

laxing certain key assumptions. Some areas to explore include re-

sistive effects (e.g. Ohmic diffusion) (e.g. Konar & Bhattacharya

1997), sinking of accreted material through a ‘soft’ stellar surface

(e.g. Konar & Choudhuri 2004), Hall currents (e.g. Rheinhardt,

Konenkov & Geppert 2004), non-axisymmetry and other equations

of state. For example, by assuming a hard surface, we end up with

densities at the base of the accreted layer that can be unphysically

high; it is well known that MHD equilibria can be stable in two

dimensions, yet unstable in three dimensions, even with line tying.

The magnetization of the accreted plasma also warrants inclusion;

it has been ignored by all authors except Uchida & Low (1981).

The main bottleneck hindering progress towards Grad–Shafranov

equilibria for Ma � 10−3 M� is grid resolution at the magnetic

equator. At present, we believe that the only way to alleviate this is

by appropriate logarithmic gridding in θ .

Ohmic dissipation due to electron–phonon and electron–impurity

scattering (e.g. Bhattacharya & Srinivasan 1999) is not modelled in

this paper, to keep the problem manageable. Ultimately, it should be.

It is important for magnetic structures ∼1 m in size, which develop

for Ma > 10−2 M� (Brown & Bildsten 1998; Cumming et al. 2001;

Melatos & Payne 2005). Note, however, that non-ideal effects are

already present at some level in our calculations accidentally: the

grid introduces numerical dissipation, because a field line is defined

by linear interpolation between grid points and the error in this

interpolation effectively allows matter to move across field lines.

6.2 Instabilities in three dimensions

This paper must be generalized to three dimensions before the sta-

bility question is truly settled. As a trivial example, by restricting

ourselves to two-dimensional equilibria with Bφ = 0, we suppress

unstable modes involving the toroidal magnetic field. The Parker

instability in the galactic disc has been studied in three dimensions

by Kim et al. (1998), and many simulations of toroidal and non-

axisymmetric field structures appear in the plasma physics litera-

ture. These can be studied in ZEUS-3D and will be explored in a

future paper.

Line-tying boundary conditions, as distinct from periodic bound-

ary conditions, change the character of the basic MHD waves

(Goedbloed & Halberstadt 1994). Line-tying boundary conditions

generally conflict with the phase relationships between the compo-

nents of the displacement vector ξ of the three pure modes. MHD

waves of a mixed nature occur as a result. Stability is enhanced, be-

cause it takes extra energy to bend the longitudinal component of the

magnetic field. We do not compare line-tying and periodic boundary

conditions quantitatively here but point out that line-tying enhances

stability even in three dimensions (Goedbloed & Halberstadt 1994).

Short-wavelength ballooning instabilities are stabilized by line-

tying until the overpressure at the top of the stellar crust exceeds the

magnetic pressure by a factor of 8R∗ arcsin(b−1/2)/h0 (Litwin et al.

2001). While they are predicted to occur within h0 of the surface,

we do not observe them in these simulations. Resistive ballooning

(Velli & Hood 1986) and resistive Rayleigh–Taylor modes (Khan &

Bhatia 1993) are not considered by virtue of our restriction to ideal-

MHD, but they are known to be common in distorted axisymmetric

equilibria similar to those in Fig. 1(a). These instabilities can allow

plasma slippage faster than Ohmic diffusion, but slower than the

Alfvén time.2 To properly model these instabilities globally, large

toroidal quantum numbers need to be considered (Huang, Zweibel

& Sovinec 2006).
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A P P E N D I X A : M AG N E T I C BU R I A L I N Z E U S - 3 D

In this appendix, we explain briefly how to simulate the problem

of magnetic burial in ZEUS-3D, so that the reader can reproduce

and generalize our results.3 For details on the general design and

operation of ZEUS-3D, please consult Stone & Norman (1992a,b).

After discussing the control variables in ZEUS-3D, we provide

several test cases for reference. The Parker instability in rectan-

gular coordinates, whose non-linear evolution was computed by

Mouschovias (1974, 1996), tests the basic functionality of ZEUS-3D.

An unmagnetized, isothermal atmosphere in spherical coordinates

tests the boundary conditions on ρ and v. A magnetized, isothermal

atmosphere in spherical coordinates tests the boundary conditions

on B and yields the equilibrium state for Ma = 0.

A1 Control variables

The number of active grid zones in each coordinate, ggen1:nbl and

ggen2:nbl for i and j, respectively, is Gx × Gy (typically 128 × 128).

In addition, there are two ghost zones at each edge of the grid, for

setting boundary conditions. The zones in, say, the i direction (r in

spherical coordinates) can scale geometrically using ggen1:x1rat,

such that the width of zone (i+1) is x1rat times zone i. This is how

we implement logarithmic coordinates to increase grid resolution

near the stellar surface, and to match input data from the Grad–

Shafranov code in PM04 (Section A7). There are several conditional

compilation switches which control the geometry. To implement two

dimensions, enable KSYM, and set the number of zones in the third

ordinate, ggen3:nbl to 1. For Cartesian coordinates, enable XYZ;

for spherical polar coordinates, enable RTP. When printing out the

grids, we use nxpx = nypx = 400 pixel and suppress the third

dimension (z or φ) by setting pixcon:ipixdir = 3.

The results in this paper assume an isothermal equation of state

for simplicity, thus ISO is enabled. Self-gravity, GRAV, is disabled.

Dimensionless quantities are chosen as follows: μ̃0 = 1 (automatic

in ZEUS-3D), G̃ = 1 (set grvcon:g=1), c̃s = 1 (set eqos:ciso=1)

and h̃0 = 1(h0 = c2
s R2

∗/G M∗). With these choices, the basic units

of mass, magnetic field and time become M0 = h0c2
s /G, B0 =

[μ0c4
s /(Gh2

0)]1/2 and τ 0 = h0/cs. In ideal-MHD, the evolution is

controlled by the geometry as well as the ratio of magnetic to ther-

mal pressure, α = B2/(μ0 c2
s ρ); the physical units of B and ρ do not

enter separately. Varying G̃, set to one by default, changes the unit

3 This work also serves as a prototype of a simulation pipeline being de-

veloped by the Australian Virtual Observatory. We have demonstrated a

preliminary version of this pipeline in which hydromagnetic equilibria gen-

erated by the time-independent, Grad–Shafranov code described in PM04

are output in a standard format (VOTable) and fed into ZEUS-3D to be evolved

in time.

Figure A1. Non-linear evolution of the Parker instability, showing mag-

netic flux surfaces (solid) and isodensity contours (dashed) for (X , Y ) =
(12, 25), τ̃ = 10, 20, 30 and Gx = Gy = 64

conversions but not the physics. ZEUS-3D may be run as a hydrody-

namic code without magnetic fields by disabling MHD, reducing

the run time.

The time-step 	tZ is adjusted adaptively so that the Courant–

Friedrichs–Lewy stability condition is satisfied in every zone, with

the tolerance determined by the Courant number (hycon:courno =
0.5 by default). In the case of an isothermal atmosphere and subsonic

fluid motions, it is set by max (cs, vA). Since one has vA ∝ 1/ρ ∝ ex̃
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Table A1. Gravitational, magnetic and kinetic energies (dimensionless

units) resulting from a point mass located at Reff such that M̃/R̃2
eff = 1.

The initial state is the equilibrium given by (A1) and (A2), with τ̃ = 10 and

(X, Y) = (7, 25), perturbed as described in the text.

R̃eff W̃g W̃B W̃k

7.6 × 102 −1.03 × 103 12.9 1.03 × 10−1

7.6 × 102 −1.06 × 104 14.0 1.75 × 10−3

7.6 × 103 −1.06 × 105 14.0 1.32 × 10−5

7.6 × 104 −1.06 × 106 14.0 1.22 × 10−6

7.6 × 105 −1.06 × 107 14.0 1.69 × 10−6

7.6 × 106 −1.06 × 108 14.0 1.75 × 10−6

in a typical isothermal atmosphere, the code is limited in the range

of altitudes and densities that it can faithfully simulate. The grid is

dumped at times separated by pixcon:dtpix and the code runs for a

maximum time pcon:tlim.

A2 Verifying the Parker instability in a rectangular geometry

A test case which is easy to implement (and relevant to the prob-

lem of magnetic burial) is the Parker or magnetic Rayleigh–Taylor

instability (Parker 1966; Mouschovias 1974, 1996). The initial equi-

librium state is a semi-infinite, exponentially stratified atmosphere

in a uniform gravitational field, with a magnetic field perpendicular

to the gravitational force. This configuration is unstable to overturn

(slow MHD) modes longer than a critical wavelength λcrit.

We simulate the Parker instability in the region −X � x̃ �
X , 0 � ỹ � Y . A uniform gravitational acceleration gy in the

y direction is implemented in ZEUS-3D by placing a point mass far

from the simulation box, at ỹ = R̃eff � Y . The boundary conditions

are set to be periodic at x̃ = ±X (niib, noib = 4) and reflecting at

ỹ = 0, Y (nijb = nojb = 1).

In dimensionless units, the equilibrium initial conditions are

ρ̃(x̃, ỹ) = 0.5 exp[−ỹ/(1 + α)] (A1)

Figure A2. The dipole (left) and mass ellipticity (right) as a function of

time for an isothermal atmosphere with a = 100 and r̃m = 110 in a 64 × 64

grid. Parameters: ρ0 = 1 and B0 = 0.1, x1rat = 1.03.

Table A2. Proportion of the initial mass lost from the simulation

volume, and run time for t̃ = 100, as functions of the dimension-

less hydrostatic scaleheight a−1. The grid size used was 50 × 100.

Naturally, the relative run times are more useful than the absolute.

a r̃m Per cent mass loss Run time (min)

50 60 0.5 5

50 55 14.1 5

50 52 17.0 5

20 30 1.72 3

40 50 1.2 4

100 110 0.3 10

500 510 0.1 20

and

Ãz(x̃, ỹ) = 2(1 + α) exp[−ỹ/2(1 + α)], (A2)

with B̃x = (∇ × Ã)x = −e−ỹ/2(1+α). The initial velocity perturba-

tion is taken as ṽy = ε sin(πỹ/Y ) cos(πx̃/X ), where, for ε = 0.3,

the kinetic energy equals 0.23 per cent of the magnetic energy; cf.

Mouschovias (1996).

The stability condition is tested by importing a stable equilibrium

state, with X < λcrit/2, and checking that the kinetic energy remains

negligible compared to the magnetic and gravitational potential en-

ergies. The ratio of the kinetic energy to the total energy is given in

Table A1, scaling as R̃−2
eff for R̃eff � 105. We choose R̃eff = 7.6×104

for most runs. This test also confirms that the equilibrium is stable

for (X, Y) = (7, 25), just below the critical value λcrit/2 = 7.26

(Mouschovias 1974), and is unstable for (X, Y) = (8, 25).

We also set (X, Y) = (12, 25) and verify the output against the

results given in fig. 3 of Mouschovias (1996). We choose the same

units, namely cs = 6.2 km s−1, h0 = 1.3 × 1018 m, τ 0 = r0/cs =
6.5 × 106 yr, M0 = 5.8 × 1017 kg, ρ0 = 2.9 × 10−37 kg m−3,

B0 = 3.7 × 10−18 T. (To have exactly the same units as Mouschovias

1996 chooses G̃ = 6.67 × 10−17 in ZEUS-3D.) Fig. A1 shows the

ZEUS-3D results at the three times displayed in fig. 3 of Mouschovias

(1996). The results are in good accord, differing by less than 5 per

cent. A mountain is clearly present where the magnetic field bends

down in the negative y direction.

A3 Spherical, isothermal atmosphere, zero magnetic field

Having verified a known solution, we now move closer to our goal

and consider spherical geometry (RTP). We consider first an isother-

mal atmosphere with no magnetic field to test the effect of the

boundary conditions. In spherical geometry, the curvature of the

star, characterized by a = R∗/h0 ∼ 2 × 104, enters the problem. To

cope with this large value, we scale coordinates in ZEUS-3D loga-

rithmically (Section A1). However, the code halts prematurely when

the time-step 	tZ becomes too small; for a > 103, it does not run

at all. The problem is most severe far from the surface, where ρ is

small, vA is large, and 	tZ is small. As an initial test case in spher-

ical coordinates, we set up a spherical isothermal atmosphere with

a negligible magnetic field (α = 4 × 10−8) in 2D (single quadrant).

The initial condition is an exponential isothermal atmosphere

ρ̃(r̃ , θ ) = exp[−a(r̃ − a)/r̃ ] ≈ exp(−x̃) (A3)

threaded by a dipolar magnetic vector potential

Ãφ(r̃ , θ ) = 10−10r̃−2 sin θ. (A4)

The boundary conditions are reflecting at the pole (Bθ = 0,

nijb = 1) and at the equator (Br = 0, nijb = 5), dipolar at the surface
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Figure A3. The dipole (left) and mass ellipticity (right) as a function of

time for an isothermal atmosphere with a = 500 and r̃m = 510 in a 64 × 64

grid. Parameters: ρ0 = 1 and B0 = 0.1, x1rat = 1.03.

Table A3. Errors as a function of grid size as measured by the de-

viation of μ and ε from theoretical values for μt and εt = 0 for

a = 100, r̃m = 110 and t̃ = 0.

Grid size μ/μt ε

64 × 64 0.999 101 4.322 68 × 10−4

50 × 100 1.003 032 2.637 89 × 10−4

150 × 150 1.001 214 4.523 17 × 10−4

300 × 300 1.000 302 1.265 03 × 10−4

(niib = 3, i.e. inward flow at zero velocity, fixed density, dipolar

magnetic field) and free at the outer boundary (r̃ = r̃m) (niob = 2,

outward flow). Note that, in ZEUS-3D, a fixed magnetic field must be

accompanied by inflow, even if the inflow is at zero speed.

The experiment described in this section aims to calibrate the role

of the outer boundary condition. Equations (A3) and (A4) almost

describe a force-free equilibrium except that matter can evaporate

through the outer boundary. However, alternative boundary condi-

tions offered in ZEUS-3D are not appropriate, e.g. inflow artificially

pins the magnetic field lines at the boundary. The amount of mass

loss is monitored and r̃m is chosen large to minimize it. There is a

trade off between minimizing mass loss as well as simulation run

time (determined primarily by 	tZ), as illustrated in Table A2. Log-

arithmic grid scaling has little effect on the amount of mass which

evaporates through the outer boundary. The outer boundary condi-

tion artificially increases the dipole moment at large r, as discussed

in the main text and illustrated in Fig. 3(f). The run time is reduced

if the magnetic calculations are switched off by disabling MHD; the

results are indistinguishable. The results in Table A2 are for R∗ =
6.4 × 106 m, M∗ = 6.0 × 1024 kg, cs = 290 m s−1, h0 = 8.4 × 103 m.

With these choices, the basic units become M0 = c2
s /G = 1.2 × 1015

kg, ρ0 = M0/r3
0 = 2.1 × 103 kg m−3, B0 = [μ0 c4

s /(Gr3
0)]1/2 = 15 T,

τ 0 = r0/cs = 29 s; the alert reader will note that these parameters

describe the Earth!

A4 Spherical, isothermal atmosphere, dipole magnetic field

As a prelude to testing the stability of the Grad–Shafranov equilibria

found by PM04, we consider the simpler situation of the spherical,

isothermal atmosphere (Section A3) threaded by a substantial dipo-

lar magnetic field. Note that this is a valid force-free equilibrium

state [(∇ × B) ×B = 0 in (1) except at r = 0], except for evapo-

ration. This configuration corresponds to the pre-accretion neutron

star with Ma = 0. It serves to calibrate ZEUS-3D and estimate the

magnitude of numerical errors.

The relevant neutron star parameters are R∗ = 104 m, M∗ =
1.4 M�, cs = 106 m s−1. With these choices, the basic units become

M0 = c2
s /G = 1.5 × 1022 kg, ρ0 = M0/r3

0 = 9.5 × 1022 kg m−3,

B0 = [μ0 c4
s /(Gr3

0)]1/2 = 3.5 × 1014 T, τ 0 = r0/cs = 5.4 × 10−7 s.

However, as discussed in Section 3.3, we consider a scaled version

of the real star with a = 50, leaving the physical scaleheight, h0 =
c2

s R2
∗/(GM∗) = 0.54 m, unchanged.

To estimate the errors in the code, we calculate the magnetic

dipole moment and mass quadrupole moment and compare to the

theoretical values μ = 0.5a3 B̃∗ and ε = 0 in Table A3. For b = 1, we

obtain ε = 1.026 19; for b = 3, ε = 1.233 73. The errors are less than

Figure A4. The dipole (left) and mass ellipticity (right) as a function of

time for an isothermal atmosphere with a = 40 and r̃m = 50 in a 64 × 64

grid. Parameters: ρ0 = 1 and B0 = 0.1, x1rat = 1.03.
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Figure A5. Isothermal atmosphere with dipolar magnetic field. The kinks in

the magnetic field lines (solid) are due to numerical dissipation. Parameters:

a = 50, r̃m = 60, τ̃ = 66, 150 × 150 grid (left); a = 100, r̃m = 110, τ̃ =
66, 50 × 100 grid x1rat = 1.1 (right).

Table A4. The time taken for numerical dissipation to halt the simulation

for a = 100 r̃m = 110, and a 50 × 100 grid, as a function of ggen1:x1rat,

the geometric ratio in the rescaled coordinate r.

x1rat 	tA 	ts Time to halt (τ 0)

1 2.937 14 × 10−3 0.20 10.26

1.02 4.641 49 × 10−3 0.31 17.28

1.03 5.778 38 × 10−3 0.38 27.22

1.05 8.124 72 × 10−3 0.52 55.62

1.10 9.679 61 × 10−3 0.01 66.71

1.102 9.634 28 × 10−3 0.01 43.48

1 per cent. Fig. A2 shows how the dipole and mass ellipticity vary

with time for these cases. The dipole moment is accurate to <0.2

per cent. The minor variations are caused by numerical jitter (also

see Fig. A5) and evaporation at the outer boundary (Section 5.4.

The dependence of the error on grid size is tabulated in Table A3.

A5 Outer boundary

The outflow condition at the outer boundary has minimal effect on

the evolution if the outer boundary is sufficiently far away. To test

this, we try several values of r̃m, keeping r̃m small enough so that

the Alfvén time-step, set by the Courant condition with vA ∝ B2/ρ,

is not too short.

Numerical dissipation occurs in ZEUS-3D for runs longer than

�105 time-steps. Kinks in the magnetic field appear at grid points,

as illustrated in Fig. A5. If the outer boundary is set too many scale-

heights away, the minimum density across the grid is very low, the

maximum Alfvén velocity is very high, and the time-step, 	tZ, de-

termined by the Courant condition, is very short. This means that (i)

the simulation takes a very long time to run, and (ii) the numerical

dissipation causes the simulation to stop. For a = 50 and r̃m = 70,

the code stops at τ̃ < 2; for r̃m = 80, it stops at τ̃ < 0.2. For a = 100

and r̃m = 110, the code stops at τ̃ = 10.26, but with ggen1:x1rat =
1.03 instead of 1, it continues until τ̃ = 27.22. For a = 1000 and

r̃m = 1010, the code stops immediately. Throughout the paper, we

use r̃m = 60, so that the runs are long enough to give sufficient time

to assess the stability of the equilibria. Table A4 shows how the grid

ratio affects the time to halt.

A6 Converting to realistic a values and between codes

Here we give the formulae for converting between the Grad–

Shafranov code and ZEUS-3D. Furthermore, we detail the effects of

converting from a small (a = 50) to a realistic (a ≈ 104) star. With

h0 fixed, but allowing a to vary, we have R∗ = ah0 = 27(a/50) m,

M∗/ M� = a2h0c2
s /(G M�) = 1.0138 × 10−5(a/50)2, and

Mc

M�
= 6.1 × 10−15

(
a

50

)4 (
B∗

108T

)2 (
cs

106 m s−1

)−4

. (A5)

h0 is the dimensionless unit of length. The dimensionless units in

the Grad–Shafranov code (subscript ‘G’) are ρ0,G = Ma/h3
0 = 9.8 ×

10−16 (m/0.16)(a/50)4 kg m−3, B0,G = B∗a2/(2b) = 4.2 × 1010

(a/50)2(b/3)−1 T. In ZEUS-3D (subscript ‘Z’), ρ0,Z = c2
s /(Gh3

0) = 9.6

× 1022 kg m−3, B0,Z = (μ0/Gh3
0)1/2c2

s = 3.5 × 1014 T. For conver-

sion from the equilibrium code to ZEUS-3D, the factors are ρG,Z =
ρ0,G/ρ0,Z = GMa/c2

s = 1.3 × 10−7 (m/0.16)(a/50)4 and BG,Z =
B0,G/B0,Z = B∗a2/(2bc2

s )(Gh3
0/μ0)1/2 = 1.2 × 10−4(a/50)2 (b/3)−1.

A7 Logarithmic coordinates

PM04 concentrated maximum grid resolution near the equator and

stellar surface where ∇ρ and ∇ψ are greatest, by employing loga-

rithmic stretching:

x̃1 = log(x̃ + e−Lx ) + Lx , (A6)

ỹ1 = − log[1 − (1 − e−L y )ỹ]. (A7)

To implement these coordinates in ZEUS-3D, set ggen1:x1rat to

(XeLx + 1)(Gx −1)−1
, where 0 � x̃ � X and Lx controls the ‘zoom’.

Radial logarithmic scaling gives less grid resolution near the outer

boundary where the density is least and thus 	tZ is greater and

ZEUS-3D runs for a longer time.

When importing a Grad–Shafranov equilibrium (PM04), whose

grid is linear in y = cos θ , into ZEUS-3D, whose grid is (in many cases)

logarithmic in y, there is no trivial multiplicative factor relating ỹ1

and the required logarithmic θ scaling through ggen1:x2rat. The

problem can be overcome by rewriting the Grad–Shafranov code

such that its grid is logarithmic in θ . This problem is an obstacle

in certain sorts of numerical experiments, e.g. the bootstrapping

method in Section 4.2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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