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Abstract. We calculate the amplitude of gravitational waves from a neutron star accreting sym-
metrically at its magnetic poles. The magnetic field, which is compressed into an equatorial belt
during accretion, confines accreted matter in a mountain at the magnetic pole, producing gravita-
tional waves. We compute hydromagnetic equilibria and the corresponding quadrupole moment as
a function of the accreted mass,Ma, finding the polarization- and orientation- averaged wave strain
at Earth to behc � 6�3� 10�25�Ma�10�5M

�
�� f�0�6kHz�2�d�1kpc��1 for a range of conditions,

where f is the wave frequency andd is the distance to the source. This is� 102 times greater than
previous estimates, which failed to treat the mass-flux distribution self-consistently with respect to
flux-freezing.

INTRODUCTION

The direct observation of kilohertz gravitational waves with kilometer-baseline interfer-
ometers is presently a realistic goal. Possible transient sources of these waves include
supernovae and coalescing neutron star binaries. For periodic sources of known fre-
quency f , coherent integration over a time intervalτ, can improve the sensitivity by
� f τ�1�2 [1]. Neutron stars can act as periodic sources if their axisymmetry is broken.
There are several possible mechanisms in the literature which can deform the star, e.g.
thermally [2], or induce it to precess. The dipole magnetic field of an isolated neutron
star induces deformations with mass ellipticityε � 10�9, too small to be detected by
current interferometers [3].

We explore here a mechanism, known as magnetic burial, which can produce defor-
mations withε � 10�7. In this mechanism, material spreads from the magnetic pole,
dragging with it the magnetic field, leaving a compressed band of field at the equator
and a reduced magnetic dipole momentµ [4, 5]. The equatorial field supports a moun-
tain at the magnetic pole, which generates gravitational waves if it is misaligned with the
rotation axis. The millisecond pulsar SAX J1808.4-3658 is an ideal system for testing
this hypothesis, as discussed below.
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FIGURE 1. Equilibrium magnetic field lines (solid curves) and density contours (dashed curves) for
Ma� 10�5M

�
, calculated numerically. The coordinates measure altitude above the stellar surface.

MAGNETIC FIELD BURIAL

Hydromagnetic equilibria

The steady-state, ideal-MHD equations for an isothermal atmosphere (p � c2
sρ) re-

duce to the force balance equation (SI units)

∇p�ρ∇φ �µ0
�1�∇�B��B � 0� (1)

whereB denotes magnetic field,ρ mass density,p pressure, andφ gravitational po-
tential. For an axisymmetric configuration we may writeB � ∇ψ�r�θ���r sinθ�� êφ ,
leading to the Grad-Shafranov equation (Payne & Melatos 2002)

∆2ψ � F ��ψ�exp���φ �φ0��c2
s�� (2)

F�ψ� � p�ψ�exp��φ �φ0��c2
s� traces the pressure along a flux tube outwards from the

stellar surface,φ0 is the surface gravitational potential, and∆2 is the Grad-Shafranov
operator (Payne & Melatos 2002). The hydromagnetic length-scale�B���∇B� is much
smaller than the hydrostatic length-scale�p���ρ∇φ �, so thatφ � GM�r�R2

�
. To close

the problem, and connect the initial and final states uniquely, we require mass to be
conserved in flux tubes in ideal MHD, according to:

dM
dψ

� 2π
�

C
ρ�r�θ�

r sinθ
�∇ψ�

ds� (3)

C is a magnetic field line, and the mass-flux distributiondM�dψ is prescribed.
With ψ � 0 at the pole andψ � ψ� at the equator, the total accreted massMa is

assumed to be distributed asdM�dψ � �Ma�2ψa�exp��ψ�ψa�, whereψa � ψ�R��Ra
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is the flux enclosed by the inner edge of the accretion disk at a distanceRa. For the
boundary conditions, we fixψ to be dipolar atr � R�, assume north-south symmetry, fix
theψ � 0 field line and leave the field free at larger. The line-tying condition atr � R�
does not allow any sinking of accreted material and is only valid whenMa�M�.

Equations (2) and (3) are solved numerically using an iterative relaxation scheme
[5, 6]. Convergence to the final state occurs monotonically forMa� 10�5M� but is more
erratic for largerMa. We also solve (2) and (3) analytically by a Green function method
for the sake of verification [5]. Figure 1 shows an equilibrium configuration forMa�
10�5M� andψa�ψ� � 10�1. Evident is the polar mountain, traced out by the dashed
contours and the pinched, flaring magnetic field or ‘tutu’ [4]. The fractional deformation
is given by the ellipticityε � 2πI�1

0

� 1
0 d�cosθ�

� ∞
R
�

dr r4�3cos2 θ �1�ρ�r�θ�.

Ohmic dissipation

Ohmic dissipation allows the compressed equatorial magnetic field to relax by dif-
fusing through the mountain, counteracting pile-up due to accretion. The Ohmic (τd)
and accretion (τa) time-scales have been studied in one-dimensional geometry with
the magnetic field parallel to the surface of the star [7, 8]. Growth of the polar moun-
tain halts whenτa � Ma�Ṁa� τd � µ0σL2, whereσ is the electrical conductivity and
L � ��ψ���∇ψ��min is the characteristic length scale of the steepest field gradients [8].
This limitsε to its value atτa� τd (massMd) [5]. We ignore the Hall effect and thermo-
magnetic drift in this work.

MASS QUADRUPOLE AND MAGNETIC DIPOLE MOMENTS

Figure 2a showsε as a function ofMa. The mass quadrupole moment is 2εIzz�3,
where Izz � 0�4M�R2

� is the moment of inertia. We plot both analytic and numerical
results. The analytic results follow from a Green function analysis [5], and are given
by ε � 5Ma��2M���1� 3�2b��1� Mab2��8Mc��

�1, µ � ψ�R��1� Ma�Mc�
�1, Mc �

min�Md�2πGM�ψ2
���µ0R2

�c
4
s��, andb � ψ��ψa. Numerical results are plotted forb � 3,

where convergence is most secure; they show good agreement.
ε increases linearly withMa until either (i) sufficient mass builds up in the polar

mountain and causes it to spread towards the equator, limiting the growth of the polar
deformation, or (ii) ohmic diffusion allows matter to spread across field lines. At larger
Ma, the saturation valueε � 20�Mc�M��b�2 depends only on the polar flux tube. For
realistic accretion geometries,b� 100 givesε � 10�7, potentially leading to detectable
levels of gravitational radiation.

The characteristic gravitational wave strain, averaged over polarization and orienta-
tion, is given byhc ∝ Izz f 2ε�d, whered is the distance to the source [1]. Figure 2b
compareshc with sensitivities of the initial and advanced detectors in LIGO for a coher-
ent integration withτ � 1 yr. Detections are expected forMa� 10�5M�, f � 0�2 kHz,
(LIGO), andMa� 10�6M� f � 0�1 kHz (advanced LIGO).
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FIGURE 2. (a) Mass ellipticity as a function ofMa plotted for severalb values, with numerical results
shown forb� 3 for comparison. (b) Characteristic wave strainh c as a function of knownf showing the
weakesthc detectable with 99% confidence inτ � 107s for LIGO and advanced LIGO, compared with
the expected signal strength for a neutron star atd � 10 kpc. Lines are shown forM a�M

�
� 10�7, 10�4

with b� 30 (dashed) andb� 3 (dotted).

DISCUSSION

The mechanism of magnetic burial implies that millisecond X-ray pulsar periods such
as SAX J1808.4-3658 may be detectable as gravitational wave sources with current
generation interferometers. The signal strength is comparable to that invoked by Bildsten
[2] to explain the narrow range of X-ray millisecond pulsars.

These sources have the advantage of persistence at a known frequency. For a neutron
star accreting at the Eddington ratėMa� 10�8M�yr�1, it takes only 104 yr to accrete
enough mass to induce detectable gravitational radiation. Moreover, magnetic burial
reduces the magnetic dipole moment asε increases, [4, 5], implying a scaling between
hc andµ that is observationally testable [9].
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