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1 Introduction

In this assignment we investigate daily weather

observations from Alice Springs, Woomera and

Charleville from 1950�2006. We attempt to cor-

relate the increase in CO2 in the atmosphere with

a change in the e�ective Stefan's constant for the

earth by �tting the di�erence between the maxi-

mum and minimum temperatures overnight.

2 Scripts and Analysis Tools

Matlab is used to perform the analysis. The scripts

I used are available at http://www.ph.unimelb.

edu.au/~jnnewn/EM/. Most of the analysis is per-

formed by the script in asgt.m, which calls other

functions as necessary. This script is divided into

cells so that parts of it can be run separately.

3 Initial Analysis

3.1 Import

To read the data in from the provided text �les, I

used the ezread function. The script import_all.m

imports each data �le. It calls the function in im-

port_data.m, which uses ezread and hoursdarkness.

Hoursdarkness is a function to calculate how many

hours of darkness there will be on a given date at

a given latitude.

3.2 Data presence

To see which years have reasonably complete data,

a script reports how many valid rows of data

there are in each year. This script is in the �le

valid_years.m. Running this �le shows that rea-

sonably complete data begins in the year 1952.

3.3 Some Quick Histograms

For this year, we calculate sample means and stan-

dard deviations using the following formula:

µ̂ =

∑
i xi
N

(sample mean)

s =

√∑
i (xi − µ)2

N − 1
(sample standard deviation)

where we have used N − 1 instead of N as the

usual Bessel's correction to reduce the bias of the

standard deviation estimator.

The �rst cell (lines 3�26 of asgt.m) perform this

calculation using the function plotHist. PlotHist

uses the matlab functions mean and std to calcu-

late the above quantities. The results are given

in Figures 1�3. The quantities and their sample

means and standard deviations are given in Ta-

ble 1.

The histograms look reasonably Gaussian, with

the exception of Cloudiness which is heavily bi-

ased toward 0 for Alice Springs and decidedly non-

Gaussian for the other data sets.

3.4 Correlations

The sample correlation coe�cient between two

data sets X and Y is de�ned as

rxy ≡
∑

i (xi − µ̂x) (yi − µ̂y)

(n− 1) sxsy
.

It is a good indicator of a linear dependence be-

tween X and Y. This calculation is implemented

by the matlab function corrcoef.

The second cell (lines 35�66) of asgt.m calcu-

lates Table 2 and plots Figures 4�6. This code

uses the function plotCorr.m which performs the

calculation and plots the graph.

Very strong correlations are observed between

maximum and minimum temperature. The corre-

lations are slightly stronger when the max to min

temperature change is considered (i.e. maximum

- next day minimum, or dT2).
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Quantity Alice Springs Charleville Woomera

Minimum temperature 12.853 ± 7.281 12.812 ± 7.423 11.552 ± 5.462

Maximum temperature 27.831 ± 7.830 27.207 ± 7.427 24.812 ± 7.547

Max temp - (min temp for the same day) (dT1) 14.978 ± 4.620 14.395 ± 4.186 13.259 ± 4.035

Max temp - (min temp for next day) (dT2) 14.966 ± 3.841 14.408 ± 3.449 13.273 ± 3.638

Average overnight cloudiness (C) 2.533 ± 2.527 2.977 ± 2.403 3.558 ± 2.375

Average overnight relative humidity (H) 33.204 ± 17.429 42.553 ± 18.235 45.562 ± 16.775

Table 1: Sample Means and Standard Deviations for 1952.

The correlation between the change in temper-

ature and the length of the night is negative, as

would be expected � with less time to cool (longer

night), the change in temperature will be smaller.

Strong negative correlations are also observed be-

tween the overnight cloudiness and humidity. This

is logical because the increased water vapour in the

atmosphere acts as a blanket and reduces the tem-

perature change. Cloudiness and humidity are also

strongly correlated.

Interestingly, the correlations for Woomera are

signi�cantly di�erent to the other data sets. This

indicates something unusual about that data set,

such as di�erent data collection conditions.

3.5 Monte Carlo methods

In order to determine if there is a statistically

signi�cant trend in the temperature data, we use

Monte Carlo resampling from the assumed Gaus-

sian distributions (see Figures 1�3) of the mini-

mum temperature, the maximum temperature and

dT2. This allows us to determine the variance of

the experimentally measured mean temperatures1

for each year and hence determine a variance for

the computed �t.

The code to perform this procedure is in the �le

MonteCarlo.m. Cell 3 in asgt.m (lines 68-110) sets

up the data and plots and saves the results. The

�t is performed by the �le york_�t.m.

Figures 7�9 show the results. For most mini-

mum and maximum temperatures, there is a sta-

tistically signi�cant increase.

Studying these �gures, we see that changing the

size of the interval (using 1- or 5-year blocks) has

little e�ect on the error in the gradient, as one

would expect (it is e�ectively the same statistical

analysis). There is usually a small e�ect on the

actual computed value of the gradient, but the two

1which is di�erent to (considerably smaller than) the vari-
ance of the data itself, of course

values (for 1- or 5-year blocks) are well within each

others' error bounds.

We also see that using 5-year blocks usually re-

sults in smaller standard devations for each point

(as we are Monte-Carlo sampling �ve times as

many points, with a correspondingly smaller vari-

ation in the mean. This does not hold true for

dT2, indicating a wider variance for this computed

value.

4 Model theory

In this section we develop a simple theory of how

the temperature changes from the maximum dur-

ing the day to the minimum at night. We begin

with the Stefan-Boltzmann Law:

P = σT 4 (4.1)

where P is the power radiated by a black body, σ ∼
5.67 × 10−8Wm−2K−4 is the Stefan-Boltzmann

constant, and T is the temperature of the black

body.

To allow for the emissivity of the surface, we

consider a modi�ed σ,

σ′ = εσ

where ε is the emissivity of the earth. Our model

for σ′ is

σ′ = 0.5 (S0 + S1× C + S2×H)σ

which allows for �rst-order e�ects of cloudiness

and humidity on the emissivity. The 0.5 appears

because this will ensure that S0 is approximately

1, as the surface of the earth only cools for half

the time (the rest of the time its temperature is

increasing as a result of being in sunlight).

We assume that the basic equation that governs

how the atmosphere cools at night is

Q = CH∆T (4.2)
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Quantity Alice Springs Charleville Woomera

Minimum and maximum temp on the same day 0.8155 0.8411 0.8553

Maximum temp and minimum temp the next day 0.8734 0.8915 0.8928

dT1 and the number of hours of darkness -0.0726 -0.1010 -0.4788

dT2 and the number of hours of darkness -0.0741 -0.1095 -0.5253

dT2 and C -0.5862 -0.6252 -0.2904

dT2 and H -0.5342 -0.5283 -0.6161

H and C 0.4275 0.4451 0.3131

Table 2: The normalised correlation coe�cient between the various data sets for 1952.

where Q is the amount of heat radiated,

CH = (1 + C1 ×H + C2 × C) 8 × 105JK−1

is the heat capacity of air (taking humidity and

cloudiness into account), and ∆T is the change in

temperature. We approximate Q by

Q =

ˆ N

0
P (t) dt

=

ˆ N

0
σ′T (t)4 dt

where N is the number of seconds between Tmax
and Tmin (we will use the length of the night for

N).

Approximating

T (t) = Tmax − ∆T t

N

(i.e. a linear drop in temperature) and using the

binomial expansion (with T in Kelvin, ∆T � T ),
we work through to

Q = σ′NT 4
max

(
1 − 2

∆T

Tmax

)
.

Inserting this expression into (4.2) yields

CH∆T = σ′NT 4
max

(
1 − 2

∆T

Tmax

)

and now solving for ∆T :

CH∆T = σ′NT 4
max − 2σ′N∆TT 3

max

σ′NT 4
max = ∆T

(
CH + 2σ′NT 3

max
)

∆T =
σ′NT 4

max(
CH + 2σ′NT 3

max
)

Tmax − Tmin =
σ′NT 4

max(
CH + 2σ′NT 3

max
)

Tmin = Tmax − σ′NT 4
max(

CH + 2σ′NT 3
max

) .
(4.3)

Equation (4.3) is the model that we will �t the

data to, by �nding the best values of S0, S1, S2,

C1 and C2.

5 Fitting to the model

The code in Cell 4 (lines 112-218 of asgt.m) �ts

various-duration blocks of data to this model, and

then �ts a trendline through the resulting sequence

of S0 values to determine if there is a statistically

signi�cant trend in the measured radiative forcing

of the earth during 1950�2006. The results are

given in Figures 11�14. Some discussion of these

results is given in Section 6.

6 Results and Analysis

At a temperature of 300K, Equation (4.1) gives

the power emission from the Earth's surface as

about 459Wm−2. From Figure 15, we see that the

amount by which CO2 prevents emission through

the atmosphere is about 1.5Wm−2. Figure 17

shows results from the ModTran modelling pack-

age. This indicates that a change from 310�

385ppm (Figure 15) will result in a reduction of

about 0.9Wm−2 to the radiative forcing compo-

nent. (The values from ModTran are lower be-

cause it simulates conditions at an altitude of
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70km, at which height the atmosphere is consider-

ably cooler.)

As a result, to be sensitive to the e�ect of CO2

levels changing, the reduction in S0 will be about

0.9/459 = 0.2%. This corresponds to an expected

gradient of S0 with respect to years of about

gS0 = − 0.2%

(2006 − 1950)
× 1.5︸︷︷︸
initial value for S0

= −5 × 10−5 per year

This is quite a small result. The observed gra-

dients for the various data sets are presented in

Table 3.

From these results we can see that we need

about an order of magnitude improvement in the

uncertainty to be able to observe the e�ect of car-

bon dioxide on the temperature.

Also, it is important to note that other trends

in the data are apparent. Our model does not take

these into account and they swamp the e�ect we

are looking for. For example, the best �t to the Al-

ice Springs data indicates a signi�cant increase in

S0 (i.e. the region now cools faster at night than it

did in 1950. This could be due to many things, in-

cluding changing weather patterns, a change in the

colour of the surface (becoming darker and hence

a better emitter), increased vegetation or housing

development changing the emissivity of the sur-

face.

In order to reduce the error margin, it could

be important to measure the temperature on both

sides of the CO2 barrier, i.e. at ground level and

at 70km. This would be expensive. Several mea-

surements of the temperature at the same time for

each day would also help �t to the model better.

7 Conclusion

Our analysis is inconclusive as there were too many

unknown errors which swamped the signal we were

looking for. Clear trends in the emissivity of the

earth for di�erent locations were observed, in dif-

ferent directions for di�erent locations, indicating

other e�ects our model did not take into account.
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Data Set gS0 (×10−4 per year) uncertainty (2s.d.)

Alice Springs 30 6

Charleville 0 9

Woomera -16 10

Bourke Post O�ce -20 16

Table 3: . S0 gradients. The expected value corresponding to CO2 levels increasing is about 0.5 to 1.

These �gures come from Figures 11�14.

Figure 1: Histograms for Alice Springs data set for 1952.
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Figure 2: Histograms for Charleville data set for 1952.

Figure 3: Histograms for Woomera data set for 1952.
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Figure 4: Various comparisons for Alice Springs 1952 data.
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Figure 5: Various comparisons for Charleville 1952 data.
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Figure 6: Various comparisons for Woomera 1952 data.
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Figure 7: One- and �ve-year trends for Alice data. The con�dence interval displayed for the gradient is

two standard deviations, indicating statistically signi�cant increases for max temp and dT2.

Figure 8: One- and �ve-year trends for Charleville data.
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Figure 9: One- and �ve-year trends for Woomera data.
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Figure 10: An example of the �t to the model.
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Figure 11: Variation in S0 for Alice data set. Each graph shows the �t for variously-sized blocks of

years: 1,2,3,5,10 and 20. Error bars and quoted errors are 2 standard deviations.
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Figure 12: Variation in S0 for Charleville data set.
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Figure 13: Variation in S0 for Woomera data set.
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Figure 14: Variation in S0 for Bourke Post O�ce data set.
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Figure 15: Atmospheric CO2 concentration over time.
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Figure 16: Climate Data, from IPCC.
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(a) Radiative forcing curve for 310ppm CO2. Here, I = 259.6Wm−2.

(b) Radiative forcing curve for 385ppm CO2. Here, I = 258.7Wm−2.

Figure 17: Change in Radiative Forcing, from http://geoflop.uchicago.edu/forecast/docs/

Projects/modtran.html .
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