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We wish to �nd a computationally e�cient solution to

I
1/2
abcd =

ˆ ∞
−∞

dx e−x2/(1/2)Ha(x)Hb(x)Hc(x)Hd(x) (1)

where Hn(x) = (−1)nex2 dn

dxn e
−x2

are the (physicists') Hermite polynomials.

By symmetry of the Hermite polynomials, for a+ b+ c+ d odd, I
1/2
abcd = 0. This is assumed in the

following discussion.
[Witschel(1973)] gives a derivation for any number of Hermite polynomials using commutation

algebra. Unfortunately the procedure cannot be performed for general a, b, c, d. This article follows
the procedure of [Titchmarsh(1948)] and essentialy performs one more iteration, extending the result
for three Hermite polynomials to four. An alternative method is given in [Busbridge(1948)], which
gives a general result for Ix

a1a2···an
.

To do this, we wish to get (1) into the form of Titchmarsh's result
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Using the identity

Hm(x)Hn(x) = 2nn!
n∑

r=0

(
m

n− r

)
Hm−n+2r(x)

2rr!
, n ≤ m

where (
m

n− r

)
=

m!
(n− r)!(m− n+ r)!

,

(1) becomes
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and then using Titchmarsh's result (2) gives
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which, after factoring out Γ-functions with the r omitted, can be written as
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Unfortunately, unlike the fewer-Hermite-polynomial integrals, there is no known identity which
allows the hypergeometric function 3F2 (. . .) to be expressed in terms of Γ-functions. The author
believes it is quite likely that there is such an identity. For example, Saalschütz's Theorem,

3F2 (−x,−y,−z; n+ 1,−x− y − z; 1) =
Γ (n+ 1) Γ (x+ y + n+ 1)
Γ (x+ n+ 1) Γ (y + n+ 1)

comes extremely close. It is also observed that such an identity would likely make (4) symmetric in
a, b, c and d. (3) is a computationally fast solution as Γ-functions can be calculated e�ciently with the
Lanczos approximation or even exactly for half-integer arguments
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