An integral involving four Hermite polynomials

Jonathan Newnham

April 7, 2010

We wish to find a computationally efficient solution to

$$
\begin{equation*}
I_{a b c d}^{1 / 2}=\int_{-\infty}^{\infty} \mathrm{d} x e^{-x^{2} /(1 / 2)} \mathrm{H}_{a}(x) \mathrm{H}_{b}(x) \mathrm{H}_{c}(x) \mathrm{H}_{d}(x) \tag{1}
\end{equation*}
$$

where $\mathrm{H}_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}$ are the (physicists') Hermite polynomials.
By symmetry of the Hermite polynomials, for $a+b+c+d$ odd, $I_{a b c d}^{1 / 2}=0$. This is assumed in the following discussion.
[Witschel(1973)] gives a derivation for any number of Hermite polynomials using commutation algebra. Unfortunately the procedure cannot be performed for general a, b, c, d. This article follows the procedure of [Titchmarsh(1948)] and essentialy performs one more iteration, extending the result for three Hermite polynomials to four. An alternative method is given in [Busbridge(1948)], which gives a general result for $I_{a_{1} a_{2} \cdots a_{n}}^{x}$.

To do this, we wish to get (1) into the form of Titchmarsh's result

$$
\begin{align*}
I_{a b c}^{1 / 2} & =\int_{-\infty}^{\infty} \mathrm{d} x e^{-2 x^{2}} \mathrm{H}_{a}(x) \mathrm{H}_{b}(x) \mathrm{H}_{c}(x) \\
& =\frac{2^{1 / 2(a+b+c-1)}}{\pi} \Gamma\left(\frac{a+b-c+1}{2}\right) \Gamma\left(\frac{a-b+c+1}{2}\right) \Gamma\left(\frac{-a+b+c+1}{2}\right) \tag{2}
\end{align*}
$$

Using the identity

$$
\mathrm{H}_{m}(x) \mathrm{H}_{n}(x)=2^{n} n!\sum_{r=0}^{n}\binom{m}{n-r} \frac{\mathrm{H}_{m-n+2 r}(x)}{2^{r} r!} \quad, n \leq m
$$

where

$$
\binom{m}{n-r}=\frac{m!}{(n-r)!(m-n+r)!}
$$

(1) becomes

$$
I_{a b c d}^{1 / 2}=2^{d} d!\sum_{r=0}^{d} \frac{c!}{(d-r)!(c-d+r)!} \frac{1}{2^{r} r!} \int_{-\infty}^{\infty} \mathrm{d} x e^{-x^{2} /(1 / 2)} \mathrm{H}_{a}(x) \mathrm{H}_{b}(x) \mathrm{H}_{c-d+2 r}(x)
$$

and then using Titchmarsh's result (2) gives

$$
\begin{align*}
I_{a b c d}^{1 / 2}=2^{d} d! & \sum_{r=0}^{d} \frac{c!}{(d-r)!(c-d+r)!} \frac{1}{2^{r} r!} \frac{2^{1 / 2(a+b+c+d-1)}}{\pi} \times \\
& \Gamma\left(\frac{a+b-c+d+1}{2}-r\right) \Gamma\left(\frac{a-b+c-d+1}{2}+r\right) \Gamma\left(\frac{-a+b+c-d+1}{2}+r\right) \tag{3}
\end{align*}
$$

which, after factoring out Γ-functions with the r omitted, can be written as

$$
\begin{align*}
& I_{a b c d}^{1 / 2}=\frac{2^{(a+b+c+d-1) / 2}}{\pi} \Gamma\left(\frac{a+b-c+d+1}{2}\right) \Gamma\left(\frac{a-b+c-d+1}{2}\right) \Gamma\left(\frac{-a+b+c-d+1}{2}\right) \times \\
& \quad \frac{c!}{(c-d)!}{ }_{3} F_{2}\left(-d, \frac{(c-d)+a-b+1}{2}, \frac{(c-d)-a+b+1}{2} ; 1+c-d, \frac{(c-d)-a-b+1}{2} ; 1\right) \tag{4}
\end{align*}
$$

Unfortunately, unlike the fewer-Hermite-polynomial integrals, there is no known identity which allows the hypergeometric function ${ }_{3} F_{2}(\ldots)$ to be expressed in terms of Γ-functions. The author believes it is quite likely that there is such an identity. For example, Saalschütz's Theorem,

$$
{ }_{3} F_{2}(-x,-y,-z ; n+1,-x-y-z ; 1)=\frac{\Gamma(n+1) \Gamma(x+y+n+1)}{\Gamma(x+n+1) \Gamma(y+n+1)}
$$

comes extremely close. It is also observed that such an identity would likely make (4) symmetric in a, b, c and d. (3) is a computationally fast solution as Γ-functions can be calculated efficiently with the Lanczos approximation or even exactly for half-integer arguments

$$
\Gamma\left(n+\frac{1}{2}\right)=\sqrt{\pi} \frac{(2 n-1)!!}{2^{n}}=\sqrt{\pi} \frac{(2 n)!}{2^{2 n} n!}
$$

References

[Witschel(1973)] W. Witschel. Harmonic oscillator integrals. Journal of Physics B: Atomic and Molecular Physics, 6:527-534, 1973.
[Titchmarsh(1948)] E. C. Titchmarsh. Some integrals involving hermite polynomials. J. London Math. Soc., 23:15-16, 1948.
[Busbridge(1948)] I. W. Busbridge. Some integrals involving hermite polynomials. J. London Math. Soc., 23:135-141, 1948.

