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We wish to find a computationally efficient solution to
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where H,,(z) = (*1)”’61;2 dd A"_e=2" are the (physicists’) Hermite polynomials.

By symmetry of the Hermite polynomials, for a + b+ ¢ + d odd, Ilgfd = 0. This is assumed in the
following discussion.

[Witschel(1973)] gives a derivation for any number of Hermite polynomials using commutation
algebra. Unfortunately the procedure cannot be performed for general a,b,c,d. This article follows
the procedure of [Titchmarsh(1948)] and essentialy performs one more iteration, extending the result
for three Hermite polynomials to four. An alternative method is given in [Busbridge(1948)], which
gives a general result for I3 .. .., .

To do this, we wish to get (1) into the form of Titchmarsh’s result
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Using the identity
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where

(1) becomes

and then using Titchmarsh’s result (2) gives
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which, after factoring out I'-functions with the r omitted, can be written as
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Unfortunately, unlike the fewer-Hermite-polynomial integrals, there is no known identity which
allows the hypergeometric function sF5(...) to be expressed in terms of I'-functions. The author
believes it is quite likely that there is such an identity. For example, Saalschiitz’s Theorem,
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comes extremely close. It is also observed that such an identity would likely make (4) symmetric in

a,b,c and d. (3) is a computationally fast solution as I'-functions can be calculated efficiently with the
Lanczos approximation or even exactly for half-integer arguments
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