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I. INTRODUCTION

The discovery of high-temperature superconductiv-
ity in 1986 [1] resulted in a �urry of theoretical work
that continues to this day. The mechanism of high-
temperature superconductivity is not fully understood.
A full understanding would make development of new
superconducting materials economically feasible, with
many technological applications in science and industry.
In cuprate superconductors it is believed that the

superconducting property has something to do with
two-dimensional copper-oxide planes. Bardeen-Cooper-
Schrie�er (BCS) theory [2] explains low-temperature su-
perconductivity extremely well. The recent discovery of
other high-critical-temperature systems [3, 4] involving
two-dimensional structures has provided a larger experi-
mental basis against which to test theory.
It is currently infeasible to directly observe electrons

moving around in a superconducting solid. In recent
years there has been much interest in studying a system
with many similarities to BCS systems, that of ultracold
gases of fermionic atoms [5�10]. Such gases are super-
�uids, in the same way that superconducting electrons
form a super�uid. In this report, we apply BCS the-
ory to a one-dimensional cloud of fermions in a harmonic
trap, and look for evidence of a phase transition, with no
fermionic pairing on one side (∆ = 0) and some on the
other.

II. THEORY

In this discussion we follow [10, 11]. Unlike Jensen et.
al, we analyse the one-dimensional case and include the
Hartree term in our numerical solution procedure. We
also do not assume symmetry around the origin.
We begin with a one-dimensional version of the BCS

hamiltonian [2]

H =
∑
σ

ˆ
dx Ψ̂†σ(x)

(
− ~2

2mσ
∇2 − µσ + V (x)

)
Ψ̂σ(x)

+
¨

dx dx′ Ψ̂†↑(x)Ψ̂†↓(x
′)U(x− x′)Ψ̂↓(x′)Ψ̂↑(x) (1)

where V (x) = 1/2mω2x2 is a harmonic potential. This is
sensible as any trap is harmonic to �rst order and so this
matches with the experimental traps used in other studies
[8, 9] quite well. Here, Ψ̂σ(x) and Ψ̂†σ(x) are the real
space annihilation and creation operators of a particle
with spin σ at position x. We approximate the interaction
as U(x − x′) = δ (x− x′)U , which is reasonable as the
actual Coulomb interaction goes as x−6.
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We now apply the mean-�eld approximation. The �rst
step is to de�ne

∆(x) ≡ U
〈

Ψ̂↑(x)Ψ̂↓(x)
〉

∆∗(x) ≡ U
〈

Ψ̂†↓(x)Ψ̂†↑(x)
〉

which is the mean overlap between opposite spins as a
function of x. We now have

UΨ̂†↑Ψ̂
†
↓Ψ̂↓Ψ̂↑ = U

(
1
U

∆∗ +
1
U
δ†(x)

)(
1
U

∆ +
1
U
δ(x)

)
(2)

where

1
U
δ†(x) ≡ Ψ̂†↑(x)Ψ̂†↓(x)− 1

U
∆∗(x)

describes the deviations about the mean. The mean-�eld
approximation takes these deviations to be small, such
that δ†δ is negligible. Expanding (4) and discarding the
δ†δ term, we �nd

UΨ̂†↑Ψ̂
†
↓Ψ̂↓Ψ̂↑ = − 1

U
∆∗∆ + ∆∗Ψ̂↓Ψ̂↑ + ∆Ψ̂†↑Ψ̂

†
↓ .

The ∆∗∆ term is the mean �eld of the interaction (not
an operator) and hence provides a constant o�set to the
eigenenergies. It is thus not interesting when considering
interactions between particles, so we absorb it into the
constant part of the hamiltonian H0.
The second part of the mean-�eld approximation is to

de�ne

nσ(x) ≡
〈

Ψ̂†σ(x)Ψ̂σ(x)
〉
. (3)

This allows an alternative expansion of

UΨ̂†↑Ψ̂
†
↓Ψ̂↓Ψ̂↑ = UΨ̂†↑Ψ̂↑Ψ̂

†
↓Ψ̂↓

= U (n↑ + δ↑(x)) (n↓ + δ↓(x)) (4)

where

δσ(x) ≡ Ψ̂†σ(x)Ψ̂σ(x)− nσ(x) .

We once again assume that the �uctuations around the
mean number of particles are small and expand (4) to get

UΨ̂†↑Ψ̂
†
↓Ψ̂↓Ψ̂↑ = −Un↑n↓ + Un↑Ψ̂

†
↓Ψ̂↓ + Un↓Ψ̂

†
↑Ψ̂↑

Performing both of these expansions is necessary be-
cause they take into account di�erent types of �uctua-
tions.
Putting all this together, we arrive at the mean-�eld

Hamiltonian

HMF =
∑
σ

ˆ
dx Ψ̂†σ(x)

(
− ~2

2mσ
∇2 − µσ + V (x)

)
Ψ̂σ(x)

+
∑
σ

ˆ
dxUnσ(x)Ψ̂†−σ (x) Ψ̂−σ (x)

+
ˆ
dx
(

∆(x)Ψ̂†↑ (x) Ψ̂†↓ (x) +H.c.
)
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In order to diagonalise HMF we expand Ψ̂ in terms of
the eigenstates of a harmonic trap:

Ψ̂σ(x) ≡
∑
n

Rn(x)ânσ (5)

where

Rn(x) ≡
(
2nn!
√
π
)−1/2

Hn(x) e−x/2

with Hn the Hermite polynomials. Inserting these de�-
nitions yields

HMF =
∑
n,σ

(εn − µσ) â†nσânσ + U
∑
n,n′,σ

Jnn′σ̄â
†
nσân′σ

+
∑
n,n′

Fnn′ â†n↑â
†
n′↓ +H.c.

(6)

where the H0 eigenstate energies εn = ~ω (n+ 1/2). The
number interaction, in which a large number nσ in one
polarization changes the chemical potential of the other
polarization µσ̄, is described by the elements

Jnn′σ =
ˆ ∞
−∞

dxRn(x)nσ(x)Rn′(x) .

The pairing �eld, in which it may be energetically
favourable to create pairs of highly-entangled particles
instead of single ones, is described by

Fnn′ =
ˆ ∞
−∞

dxRn(x) ∆(x)Rn′(x) .

In this basis, the density of spin σ atoms is obtained
by combining (3) and (5) to give

nσ(x) =
∑
n,n′

Rn(x)Rn′(x)
〈
â†nσân′σ

〉
(7)

and similarly

∆(x) = U
∑
n,n′

Rn(x)Rn′(x)
〈
â†n↑â

†
n′↓

〉
. (8)

In order for this problem to be computationally feasible,
we now introduce a limit to sums over n, Nc. This is al-
lowable because the states we are ignoring in this process
are high-energy and thus have very low occupation levels,
and so ignoring them should have a negligible e�ect on
the solution (as long as Nc is high enough to incorporate
all states with a reasonable degree of occupancy). This
limitation allows us to write (6) matrix form:

HMF =



â†0↑
...

â†Nc↑
â0↓
...

âNc↓



T

M



â0↑
...

âNc↑
â†0↓
...

â†Nc↓


(9)

with

M =



ε0 − µ↑ + UJ00↓ · · · UJ0Nc↓ F00 · · · F0Nc

...
. . .

...
...

. . .
...

UJNc0↓ · · · εNc
− µ↑ + UJNcNc↓ FNc0 · · · FNcNc

F ∗00 · · · F ∗0Nc
−ε0 + µ↓ − UJ00↓ · · · −UJNc0↑

...
. . .

...
...

. . .
...

F ∗Nc0 · · · F ∗NcNc
−UJ0Nc↑ · · · −εNc

+ µ↓ − UJNcNc↑


.

We now introduce the basis that diagonalises HMF by
the de�nition of γj ,

HMF ≡
2Nc+1∑
j=0

Ej γ̂
†
j γ̂j , (10)

where γ̂ are the eigenstates and Ej the eigenenergies. In
this basis, HMF is diagonal. The γ̂ basis is related to the
harmonic oscillator basis by the Bogoliubov transforma-

tion (de�ning the unitary Ŵ ),



â0↑
...

âNc↑
â†0↓
...

â†Nc↓


≡ Ŵ



γ̂0↑
...

γ̂Nc↑
γ̂†0↓
...

γ̂†Nc↓


. (11)
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Inserting (11) into (9) yields

HMF =



γ̂0↑
...

γ̂Nc↑
γ̂†0↓
...

γ̂†Nc↓



†

Ŵ †MŴ



γ̂0↑
...

γ̂Nc↑
γ̂†0↓
...

γ̂†Nc↓


and comparing with our de�nition of γ̂ (10) demonstrates

that Ŵ †MŴ must be the diagonal matrix of energy
eigenvalues E. We thus �nd that Ŵ is the eigenvector
matrix of M (or that the columns of Ŵ are the eigenvec-
tors of M) via the equation

MŴ = ŴE = EŴ .

In the γ̂ basis, the density of atoms in the ↑ state is,
from (7) and (11),

n↑(x) =
Nc∑

n,n′=0

Rn(x)Rn′(x)

×

〈∑
j

Wjnγ̂
†
j

∑
j′

Wj′nγ̂j′

〉 (12)

=
∑
j

Nc∑
n,n′=0

Rn(x)Rn′(x)WjnWjn′

〈
γ̂†j γ̂j

〉

=
∑
j

Nc∑
n,n′=0

Rn(x)Rn′(x)WjnWjn′nF (Ej) (13)

where nF (E) = 1/
(
1 + eE/kBT

)
is the Fermi distribution

as the γ states are orthogonal. This means the γ states
do not interact with each other, and occupation levels are

given by the Fermi distribution. Similarly,

n↓(x) =
∑
j

Nc∑
n,n′=0

Rn (x)Rn′ (x)

×Wj,n+Nc+1Wj,n′+Nc+1nF (−Ej)

and

∆(x) = U
∑
j

2Nc+1∑
n,n′=0

Rn (x)Rn′ (x)

×WjnWj,n′+Nc+1 (1 + 2nF (Ej)) .

Integrating over x in (13) gives

N↑ =
∑
j

Nc∑
n=0

WjnWjnnF (Ej)

N↓ =
∑
j

Nc∑
n=0

Wj,n+Nc+1Wj,n+Nc+1nF (−Ej) .

We now have all the equations we need. To solve them
we will use a self-consistent approach: Start with a guess
forWjn and Ej and use that to calculate n↑(x) and n↓(x)
, and hence Fnn′ and Jnn′ ; this will allow us to calculate
(along with a guesses for µ↑and µ↓) M , from which we
can �nd new (hopefully more accurate) values for Wjn

and Ej . Performing this procedure repeatedly hopefully
converges the matrix to a correct solution. If we want a
speci�c N↑ and N↓ then we can adjust the µ↑ and µ↓ at
each iteration, as a larger chemical potential µ normally
leads to an increased number of particles N .

There is an important simpli�cation to reduce the com-
plexity of the problem signi�cantly. Calculating Fnn′ can
be done much more e�ciently by observing that

Fnn′ =
ˆ ∞
−∞

dxRn(x)∆(x)Rn′(x)

=
ˆ ∞
−∞

dxRn(x)Rn′(x)
∑
jmm′

Rm(x)Rm′(x) +WjmWj,m′+Nc+1 (1 + 2nF (Ej))

=
∑
j

2Nc+1∑
m,m′

WjmWj,m′+Nc+1 (1 + 2nF (Ej))
ˆ ∞
−∞

dxRnRn′RmRm′

and there exists an e�cient way of calculating the integral, namely

ˆ ∞
−∞

dxRa(x)Rb(x)Rc(x)Rd(x) =
2−1/2

π2
√
a!b!c!d!

b∑
r=0

1
r!

b!
(b− r)!

a!
(a− b+ r)!

Γ
(
−(a− b) + c+ d+ 1

2
− r
)

×Γ
(

(a− b) + c− d+ 1
2

+ r

)
Γ
(

(a− b)− c+ d+ 1
2

+ r

) (14)

for a+ b+ c+ d even. (This integral is 0 for a+ b+ c+ d odd by symmetry of the Hermite polynomials.)

A similar result can be shown for Jnn′ . This has two bene�ts: for large values of n in Rn(x), the function os-
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cillates too fast for numerical integration to be practical.
Secondly, the closed form solution given above is con-
siderably faster than numerical integration, especially if
the Lanczos approximation is used to calculate the Γ-
functions. In fact, (14) can be calculated exactly using

Γ
(
n+

1
2

)
=
√
π

(2n− 1)!!
2n

=
√
π

(2n)!
22nn!

.

III. IMPLEMENTATION

Our algorithm is given in Figure 1. The basic idea of
the algorithm is to continuously adjust the two µ val-
ues while iterating the self-dependent equation involving
Wjn. We adjust the µ values to approach the desired
values of N↑ and N↓ using the bisection algorithm.
At each iteration we plot n↑(x), n↓(x) and ∆(x).
The convergence criteria are quite strict, requiring

N↑,N↓, µ↑ and µ↓ to be determinined to within 1% (as
tested for by their range. As we are trying to constrain
two N values using two µ values (in other words, a two-
dimensional optimisation problem) with a function that
is constantly evolving, we found that we could not rely on
separating the two µ values and performing quasi-1D bi-
section on each value independently. Instead, we opted to
gradually increase the range of µ in the appropriate direc-
tion if we found that our N range no longer included the
target N . Normally the bisection algorithm halves the
target range of µ at each step, choosing a half depending
on whether the N corresponding to the midpoint of the
µ range is above or below the target N .
One problem we encountered in using (14) is that ma-

chine precision issues are encountered in dividing very
large numbers by other very large numbers. The double-
precision �oating point format can only store numbers up
to about 10308 or Γ (171), constraining the maximum Nc
to about 50. In our implementation, strange problems
occured with larger Ncs, limiting our maximum Nc to

about 30.

IV. RESULTS

Table II gives a summary of the most interesting re-
sults. Some associated plots are given in Figure 2.
Run 12 was interesting because the solver did not con-

verge to a stable solution, oscillating between n↑(x) =
n↓(x) with µ↓ ' 4 (�n stuck equal�) and ns that were
too far apart with µ↓ ∈ (1, 3). This is probably because,
with a polarisation of 2:1, we are near the boundary of
a phase transition where a larger polarisation prevents a
condensate from forming.
The results investigated six regimes, given in Table I.

They showed clear evidence of BCS condensation, heav-
ily dependent on opposing-spin interaction strength U . A
strong (more than 2:1) polarisation also prevented con-
densation.
We also investigated the e�ect of varying polarisation

for strong interactions (U = −3, kT = 1), in a series of
9 simulations with N↑ = 10 and N↓ ∈ [1, 9]. For N↓ < 6
our ∆(x) started behaving unphysically (changing sign).
A second run with U = −5, kT = 2 produced better
results, with everything above N↓ = 2 condensing into a
BCS state.

V. CONCLUSION

Our model found clear evidence of BCS condensation,
in agreement with experimental papers, and a clear phase
separation as suggested by [8]. The next step is to apply
this model to a periodic potential, to predict the results
of an experiment in which laser interference creates such
a potential for the fermionic super�uid. A 3-D box model
may also allow inference of the interaction strength U in
a real experiment.
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U kT ~ω Condenses? Sample Runs

Small Moderate Large N

Small Large Moderate N 19,20

Moderate Small Large N 1,14,16,18,22

Moderate Large Small N 21

Large Small Moderate Y 12,13,15,17

Large Moderate Small Y 2�11

Table I: Investigated Regimes.

# N↑ N↓ µ↑ µ↓ U kT ~ω Cond? Comments Plot

1 10 9 9.2 8.0 -1 1 1 N All parameters equal... crossover region.

2 10 9 9 8.8 -3 1 1 Y Moderate interaction

3 10 9 7.4 5.9 -3 3 1 N Moderate interaction, moderate temperature

4 10 9 10.6 -0.4 -5 1 1 Y Very strong interactions, halo of excess polarisation 2a

5 10 9 6.5 3.3 -5 3 1 Y Moderate temperature, strong interaction

6 10 9 5.5 3.7 -5 4 1 Y Higher temp., just barely condensed. (Just below TC)

7 10 9 5.4 3.5 -5 5 1 N Higher temp, did not condense � too hot (Just above TC)

8 10 7 6.9 0.7 -5 4 1 Y More polarisation, just barely condensed. (Just below TC) 2b

9 10 7 8.1 -0.1 -5 3 1 Y Lower temperature, condensed more easily

10 10 2 9.0 -6.5 -5 3 1 N Strong interactions, high polarisation

11 10 2 9.3 -5.3 -5 1 1 Y Strange result � ∆(x) oscillating in sign.

12 10.5 4.5 11.8 -17.7 -10 10−4 1 Y Did not converge (µ↓ oscillating � �stuck ns�) 2c

13 9.3 9.3 8.5 5.0 -3 0.01 1 Y Unconverged (�stuck ns�)

14 10 9 9.8 8.9 -0.1 0.01 1 N Strong con�nement, weak interactions 2d

15 10 10 7.4 7.4 -3 0.01 1 Y Strong interactions, low temperature

16 10 10 9.7 9.8 -0.1 0.01 1 N Strong con�nement, equal polarisations

17 10 5 9 1.2 -3 0.01 1 N Unconverged � ∆(x) sign oscillating, �stuck ns�

18 10 5 10 4.8 -0.1 0.01 1 N Large polarisation

19 10 9 8.8 7.3 -0.1 7 1 N High temperature

20 10 5 8.8 0.6 -0.1 7 1 N High temperature, high polarisation

21 10 9 7.0 5.1 -3 5 1 N High temperature, moderate interaction

22 10 9 9.6 8.5 -0.5 0.1 1 N Strong con�nement, moderate interactions

Table II: Results. Matlab generating code and plots of every run are available at [12].
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(a) Run 4. BCS condensation is observed (∆ ∼ 1). The
unpaired material is expelled from the central region and

appears as a halo.
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(b) Run 8.
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(c) Run 12. An unusual result.
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(d) Run 14. An uncondensed state, ∆ ∼ 0.

Figure 2: Various densities of the two spin states and the associated pairing potential ∆. A large value for ∆
indicates that signi�cant condensation into a BCS state has occurred. The ripples in many graphs are due to the
small numbers of particles used in our solution � like a Fourier transform of a square wave with a small number of

terms, these ripples are a result of the �nite sum over Hermite polynomials.
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