
600-656 Experimental Methods
Computation lab 1

Jonathan Newnham

April 19, 2010

1 Introduction
There are many ways of representing images. It is usually possible to remove a lot of the high-
frequency information from images without changing them noticeably. This is how JPEG image
compression works. In this assignment we investigate the Fourier and Discrete Cosine Transforms
that allow such manipulation.

2 Preliminary Study
2.1 Bit-by-bit Correlation

A binary signal and a reference waveform were provided. A short matlab routine (cm1.m) [1] plots
the signal offset that gives the largest correlation with the reference waveform (Figure 1).

We see quite clearly from the figure that the best correlation is achieved by offsetting the signal
by 235. This corresponds to a signal of
1101000001001001011100001101101110010001011011001011001110110101110101001101111001111101011

0001010000111101001111000100011101000100110010011100110101011010010101111110111011111000001

1001100001000010101010001100011111111001010010000000101111011000000111000.
This exercise demonstrates the usefulness of the correlation method – it is much easier to see that

the signals are correlated from the correlation graph than from looking at the two signals side-by-side
or superimposed. If both signals were periodic this would result in regular spikes in the graph with a
period related to the beat frequency between the signals.

2.2 Fourier Transform

In this section we investigate the Discrete Fourier Transform of x, the correlation between a signal
and an orthogonal basis of sine and cosine waves:

am ≡
2
N

N−1

∑
n=0

xn cos
(

2πmn
N

)
bm ≡

2
N

N−1

∑
n=0

xn sin
(

2πmn
N

)
for m ∈ 0..(M−1) and the inverse transform

x̂n ≡
a0

2
+

M−1

∑
m=0

am cos
(

2πmn
N

)
sin
(

2πmn
N

)
for n ∈ 1..N.

The DFT converts a signal x to its frequency-space representation am and bm. If M = N/2 then no
information is lost. We can then convert back (x̂).

1



Figure 1: Correlation.

(a) Some Fourier representations of a simple signal, for M = 5
(smooth curve), M = 20 and M = 50 (square curve, same as
original signal). The x-axis is time.

(b) The Fourier transform of a square wave. The b coefficient
is drawn as a solid line, a is dotted. This is the expected result.

Figure 2: Some Fourier transforms.

2



A vectorized version is implemented in DFT.m [1] . The code in cm2.m then plots x̂ for several
different values of M (Figure 2a). We also plot the am and bm coefficients of a square wave to ensure
that they are as expected (Figure 2b).

2.3 Zero Extension

Extending the signal with lots of zeros before we Fourier-transform it has the effect of giving us an
interpolated spectrum (Figure 3b). See file zero-extension.m.

2.4 Zero Insertion

Extending the spectrum with lots of zeros has the effect of giving us an interpolated signal when we
transform back to the time domain (Figure 3c). See file zero-insertion.m.

While these techniques don’t actually add any information to the signal, they can sometimes
make the signal easier to interpret, or allow smoothing of a signal if higher-frequency information is
not wanted.

3



(a) The pulse to be interpolated.

(b) The spectrum resulting from zero extension. (c) Zero insertion. The original signal is drawn as open circles.

Figure 3: Interpolation techniques.

4



3 Mathematical Background
The discrete cosine transform (DCT) X of an N1×N2 matrix A is

Xm1,m2 = cm1

√
2

N1

2
N2

N1−1

∑
n1=0

N2−1

∑
n2=0

cos
(

(2n1 +1)m1π

2N1

)
An1,n2 cos

(
(2n2 +1)m2π

2N2

)
with

cm1 =

{
1
2 for m1 = 1
1 for m1 > 1

The inverse transform is

An1,n2 = cn1

√
2

N1

2
N2

M1−1

∑
m1=0

M2−1

∑
m2=0

cos
(

(2m1 +1)n1π

2M1

)
Xm1,m2 cos

(
(2m2 +1)n2π

2M2

)
This is implemented by the matlab code in the files DCT.m and DCTinv.m. [1]
When we are analyzing how effective our compression has been, we will use “Entropy” as a

measure. This is calculated as

H =− ∑
{values}

P(value)× log [P(value)] ,

where P(value) is the probability of a value occurring. A lower entropy indicates that there is less
information in a signal and hence that it can be more easily losslessly compressed, for example by
Huffman coding.

4 What I Learned
The JPEG algorithm takes a block of 8x8 block of pixels, such as

A =



68 46 47 49 55 56 62 55
179 176 186 178 65 9 10 11
219 227 227 236 46 17 9 17
218 217 219 230 42 20 20 20
218 221 217 211 20 22 23 24
226 223 223 125 17 19 21 22
223 228 231 33 18 17 20 18
225 231 202 26 20 17 21 19


,

and uses the Discrete Cosine Transform to convert it into its frequency-space representation,

X =



827 607 66 −161 −44 62 22 −25
−39 −130 −113 4 86 43 −35 −50
−140 −134 61 83 −37 −71 17 78
−72 −106 16 32 −7 −4 9 12
−42 −84 3 28 9 4 −9 −12
−28 −47 15 19 −14 −11 10 16
−6 −24 6 8 3 3 −2 −13
−1 −8 4 −2 −6 1 2 −7


,

with the lowest-frequency components in the upper-left corner. It turns out that most people don’t
notice quite large changes to the high-frequency (bottom-right) components of an image. The JPEG
scheme takes advantage of this by removing unnecessary high-frequency components using a QUAN-
TIZATION MATRIX.

5



The step where all the compression happens is when X is divided by the quantization matrix and
then rounded to the nearest integer. This means that large values in the quantization matrix reduce the
entropy in components of X – a value of 128 in Q will reduce the 8-bit number (any value between
0..255) to a single bit of information, as the lower-order bits are discarded when the matrix is rounded
off.

The suggested quantization matrix for a quality factor of 50 is

QJPEG50 =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


which was determined using subjective tests where people would say how good they thought a partic-
ular image looked after being compressed. Other QUALITY FACTORS are determined by scaling this
matrix up or down and clipping to the range [1,255]. For example, QJPEG90 = QJPEG50 ∗ (100−
90)/50.

It is quite clear that this matrix heavily suppresses the high-frequency components. For example,
X7,7 will get reduced to just over two bits of information from its previous 8. Interestingly, the
lower-order components are also reduced quite a lot – for example, the constant term, X1,1, has its
lowest 4 bits rounded away. This is quite acceptable because the human eye mostly judges colour by
comparison with nearby colours. It is hard-pressed to tell the difference between a pixel values of 40
or 50. This is why most components can be have their lowest-order bits discarded.

People tend not to notice if the high-frequency components of an image are less detailed, so most
quantization matrices are larger in the lower-right components, resulting in more zeros in X when X is
divided by Q. The reduced X is then normally further compressed using lossless Huffman encoding;
we will use Entropy H and count zeros to get an estimate of the possible compression ratio.

These techniques can also be used to remove certain specific frequencies of noise from an image
(by dividing or setting to zero the specific components of the DCT that are problematic). They can’t
do much about white noise as that is frequency-independent.

5 Results
Code to transform images was implemented in jpeg.m [1]. I used Figure 4a as my sample image. It
has regions where both high and low frequency are important.

5.1 Reducing the high frequencies

Figure 5 gives the results of a linear quantization matrix that is biased towards removing high-
frequency components. This neatly erases the high-frequency components and results in a compres-
sion factor of 0.83/4 = 4.8 using the entropy values of the DCTs. The image (Figure 5a) is still quite
recognizable, although some small high-frequency noise is visible. The high-frequency components
are more noisy because they have been rounded off more severely. A smaller maximum value for
the linear compression scheme would result in a cleaner image but with a lower compression ratio.
Trying to take the DCT of the full image instead of block-by-block is noticeably less successful. The
compression ratio is not as good as well as the introduced noise being much more noticeable because
it is of lower frequency.

5.2 Reducing the low frequencies

Figure 6 gives the results of a linear quantization matrix that is biased towards removing low-frequency
components. This results in a similar compression ratio but subjectively far worse image quality.

6



(a) Sample image (b) Full-image DCT. H = 5.7. (c) 8x8 DCT. 37% zeros, H = 4.0

Figure 4: The sample image and some DCTs of it. The full DCT contains more information (higher
entropy H) than the 8x8 block DCT because the rounding was more drastic for the 8x8 blocks. In
Figure 4c, observe how the low-frequency components are always strong, but the high-frequency
components are only strong in complicated parts of the image.

(a) The effect of reducing the amount of information in high-
frequency components.

(b) The effect of removing high-frequency components. 91%
zeros, H = 0.83

(c) A “linear” quantization matrix that
removes high-frequency components.

(d) A reduction of high frequencies in
the full transform. 89% zeros, H =
0.88. Compare Figure 4b.

(e) The effect of a full linear reduction.

Figure 5: Results.

7



(a) The effect of reducing the information content in low-
frequency components.

(b) The DCT: 95% zeros, H = 0.38

(c) A “linear” quantization matrix that
removes low-frequency components.

(d) A reduction of low frequencies in
the full transform. 75% zeros, H =
1.2. Compare Figure 4b.

(e) The effect of a full linear reduction
of low frequencies.

Figure 6: Removing low-frequency components. The image quality is far worse than if high-
frequency components are removed. Notice how fine detail is still visible.

Preserving the high-frequency detail (observe the chicken’s feet in Figure 6a) at the expense of low-
frequency detail results in a very poor reconstructed image. Interestingly, when applied to the full
DCT (6e), this approach resulted in the most reduction of the mid-range frequencies, as the low fre-
quencies were too strong to be removed. The noise from this is quite noticeable but the image and its
fine detail are still quite recognizable, with a decent entropy ratio of about 3.

5.3 JPEG

We now turn to the quantization matrix recommended in the JPEG standard (Figure 7). With a quality
level of 90, the result of the compression is almost undetectable by visual inspection. This still gives
a very decent entropy ratio of 2. With a quality level of 50, we just start to see some high-frequency
noise creeping in, but with an excellent entropy ratio of 4. The image is still very recognizable,
validating the recommended JPEG quantization matrix as better than the linear version. This is an
excellent result. It is interesting that the JPEG Q-matrix (QJPEG50, page 6) reduces the almost-highest
frequency components more than the very highest frequency components.

6 Conclusion
Quantization matrices which removed too many low-frequency components made the image appear
blocky (see the Linear quantization matrix in Figure 5). Quantization matrices which removed high-
frequency components resulted in high-frequency noise appearing in the image. Trying to perform a
transform on the whole image instead of in blocks did not take advantage of local autocorrelation and

8



(a) JPEG-90. (b) DCT of JPEG-90 quantization. 77% zeros, H = 1.92.

(c) JPEG-50. (d) DCT of JPEG-50 quantization. 89% zeros, H = 0.98.

(e) Just for fun, an asymmetric quantization of the chicken im-
age. Horizontal detail is mostly preserved, while vertical detail
is reduced. Interestingly, the noise appears to be equal in both
direction, even though (looking at the DCT) it is clear that there
should be considerably more noise in the vertical direction.

(f) DCT after asymmetric quantization. Square size 25 pixels.
91% zeros.

Figure 7: JPEG compression.

9



so resulted in lower compression ratios (i.e. higher entropy, or lower numbers of zeros). Attempting
to transform the whole image also introduced lower-frequency noise that was much more noticeable.

This form of compression is very suitable for image compression if the quantization matrix is
chosen carefully. A JPEG quality factor of about 90% results in good compression without noticeably
degrading the image.

7 Notes
1. The files referenced in this document can be found at http://www.ph.unimelb.edu.au/

~jnnewn/matlab.

10

http://www.ph.unimelb.edu.au/~jnnewn/matlab
http://www.ph.unimelb.edu.au/~jnnewn/matlab

	Introduction
	Preliminary Study
	Bit-by-bit Correlation
	Fourier Transform
	Zero Extension
	Zero Insertion

	Mathematical Background
	What I Learned
	Results
	Reducing the high frequencies
	Reducing the low frequencies
	JPEG

	Conclusion
	Notes

