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Towards quantum chemistry on a quantum computer

B. P. Lanyon'2*, J, D. Whitfield*, G. G. Gillett'?, M. E. Goggin'*, M. P. Almeida'?, |. Kassal®,
J. D. Biamonte®!, M. Mohseni¢/, B. J. Powell'*, M. Barbieri'?/, A. Aspuru-Guzik** and A. G. White'?

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows
exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of
computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process

. Here we report the application of the latest photonic quantum computer technology to calculate properties of the
smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20
bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond
the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad
range of quantum-chemical applications.

Nanowires

Lanyon, B. P. et. al, Nat Chem 2, 106-111 (2010)
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Towards quantum chemistry on a quantum computer

B. P. Lanyon'2*, J, D. Whitfield*, G. G. Gillett'?, M. E. Goggin'*, M. P. Almeida'?, |. Kassal®,
J. D. Biamonte®!, M. Mohseni¢/, B. J. Powell'*, M. Barbieri'?/, A. Aspuru-Guzik** and A. G. White'?

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows
exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of
computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process

. Here we report the application of the latest photonic quantum computer technology to calculate properties of the
smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20
bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond
the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad
range of quantum-chemical applications.

Lanyon, B. P. et. al, Nat Chem 2, 106-111 (2010)

110720 bytes = 1 million machines, each with 100 terabytes of storage.
This is “1 Google".
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» 1 Google-sized classical simulator ~ 66 qubits.! Quantum
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» 100 Googles ~ 72 qubits. 1 million Googles ~ 86 qubits.
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Towards quantum chemistry on a quantum computer

B. P. Lanyon'2*, J. D. Whitfield*, G. G. Gillett'?, M. E. Goggin'*, M. P. Almeida'?, |. Kassal*,
J. D. Biamonte®!, M. Mohseni¢/, B. J. Powell'*, M. Barbieri'?/, A. Aspuru-Guzik** and A. G. White'?

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows
exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of
computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process

. Here we report the application of the latest photonic quantum computer technology to calculate properties of the
Smallest molecular systom: the hydrogen molecule i a minimal basts. We calculate the complete anergy spectrum to 20
bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond
the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad
range of quantum-chemical applications.

Lanyon, B. P. et. al, Nat Chem 2, 106-111 (2010)

110720 bytes = 1 million machines, each with 100 terabytes of storage.
This is “1 Google".
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Quantum Sensors

» SQUIDs - Ridiculously sensistive quantum device.
» But what else can we do with quantum sensors?

» Spin-based sensors (Diamond, trapped ion...)
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Architecture Coherence Scalability Transport Interact Manipulation Manufacture
Kane type 9 9 1 3 4 2
NMR liquid 3 1 1 8? 8 9
Photonic 3 3 9 5 9 8 Architectures
GaAs QDs 2 8 5 7 9 8
P in Si- e spin 7 9 3 7 7 3
lon Traps 9 6 8 6 9 7
Superconductors 5 7 3 5 8 6
Diamond NV 8 7 5 3 7 6

For a more thorough treatment, see the ARDA
Quantum Computation Roadmap, last updated in 2004
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Greentree, Hamilton & Hollenberg, PRB 70, 235317 (2004)
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Spin Bus
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: Qubit Storage Sector : At very low temperatures,

with an odd number of
spins, bus state 7|T|7T or
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B—— world?

e » Possibility of coupling to
Readout Sector | Spin .
‘ many spins at once (good
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Figure from: Frieson et. al., PRL 98, 230503 (2007)
Original idea: Mehring and Mende, PRA 73, 052303 (2006)
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Photonic Coupling and the Flying Qubit

neutral donor bound exciton DgX
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FIG. 1: Proposed quantum-computer architecture. Donor impuri- ‘ . 3P Si
ties are placed in the neighborhood of intensity maxima of a photonic \ 295Gj- GaAs
crystal cavity mode, not necessarily every maximum, The donors are " oF- 7nse
under the action of a uniform magnetic field B and electric fields E, )

M. Abanto, L. Davidovich, Belita Yamamoto et. al., Physica Scripta
Koiller and R. L. de Matos Filho, PRB T137, 014010 (2009)
81, 85325 (2010)
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Figure: EDMR Band Structure, and first-order transitions in a
spin-1/2 donor.

» Very sensitive, but no single atom yet.

» Laurens van Beverens is a pro!
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» Can we do this with implanted nanowires?
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Oops

0.40 nA TLD

“Well, at least we know

it was conducting!”
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» Quantum Computing is very exciting and worthwhile

» Solid State methods need to demonstrate coherent
transport

> Next steps

» Something interesting with nanowires in the next month
or so Summary
» EDMR on a single donor
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Appendix
Quantum teleportation

From Wikipedia, the free encyclopedia

Quantum p or g p is a technique used to transfer
guantum information from one quantum system to another. It does not transport the system itself, nor
does it allow communication of information at superluminal (faster than light) speed. Neither does it
concern rearranging the particles of a macroscopic object to copy the form of another object. Its
distinguishing feature is that it can transmit the information present in a guantum superposition,
useful for guantum communication and computation.

More precisely, quantum teleportation is a quantum protocol by which a gubit a (the basic unit of
quantum information) can be transmitted exactly (in principle) from one location to another. The

.-. .C, H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an
Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev.
Lett. 70, 1895-1899 (1993) (this document online 7). This is the seminal paper that laid out the
entanglement protocol.

« L. Vaidman, Teleportation of Quantum States, Phys. Rev. A 49, 1473-1476 (1994)
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= First experiments with photons: Appendix

+ D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental Quantum
Teleportation, Nature 390, 6660, 575-579 (1997).

+ D. Boschi, S. Branca, F. De Martini, L. Hardy, & S. Popescu, Experimental Realization of
Teleporting an Unknown Pure Quantum State via Dual classical and Einstein-Podolsky-Rosen
channels, Phys. Rev. Lett. 80, 6, 1121-1125 (1998)

* Y.-H. Kim, 5.P. Kulik, and Y. Shih, Quantum teleportation of a polarization state with a complete
bell state measurement, Phys. Rev. Lett. 86, 1370 (2001).

= |. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, N. Gisin, Long-Distance Teleportation of
Qubits at Telecommunication Wavelengths, Nature, 421, 509 (2003)

= R. Ursin et al., Quantum Teleportation Link across the Danube, Nature 430, 849 (2004)

+ First experiments with atoms:

+ S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, Quantum
Teleportation between Distant Matter Qubits, Science 323, 486 (2008).

+ M. Riebe, H. Haffner, C. F. Roos, W. Hansel, M. Ruth, J. Benhelm, G. P. T. Lancaster, T. W. Kdrber,
C. Becher, F. Schmidt-Kaler, D. F. V. James, R. Blatt, Deterministic Quantum Teleportation with
Atoms, Nature 429, 734-737 (2004)

= M. D. Barrett, |. Chiaverini, T. Schaetz, ]. Britton, W. M. Itano, . D. Jost, E. Knill, C. Langer, D.
Leibfried, R. Ozeri, D. J. Wineland, Deterministic Quantum Teleportation of Atomic Qubits,
Nature 429, 737 (2004).
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