
 

 

 
 
 
 
 
Problems  Lecture 10 
 
1 What are the values of T for the GS of 63Cu, 109Ag, 238U? 
 
2 Write down the configurations  (including jπ) the isobaric analoges of the ground 

state of  14B that are shown in the diagram below. 
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Lecture 10  Krane Enge Cohen Williams 
 
Collective models  
Spherical nuclei. 5.2  6.9-10 Ch 6 Ch 8 
 
Isospin   11.3  6.7  6.3  8.10 
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Review Lecture 9 
 
1 If nuclei are deformed the shell model potential is not spherically symmetric 
 
2 Nillson model of deformed shell model takes this into account.  You should 

understand that for prolate nucleus (football) the orbit for largest mj intercepts 
fewer nucleons, and hence the potential is less deep, and the high mj states higher 
in energy.  Conversely for –ve deformation.  Example 19F, on simple shell model 
expect jpi = 5/2, in practice it is ½ +. 

 
Deformed even-even nuclei. Especially in region A= 140-200 or so. 
 
4 Observe lovely sequence of states 0,2, 4, 6, 8, etc  all +ve parity 

The GS is 0+since even – even.  What about the 2+ 4+ etc? 
 
5 The excited states correspond to rotation of the nucleus as a whole about one of 

the axes other than the symmetry axis.  (Rotation about the symmetry axis cannot 
be seen, but rotation ofabout the other axes can.)  We can see if a football is 
rotating end over end. 

 
6 Classically   AM     L= IIIIω  and E = ½ IIII ω2 = 

In a q mech system h)1( ++++==== IIAM  
 
So energy of states is E =                      Where I = 0, 2, 4, 6, etc 
 
Even values of I only, since if GS is even parity, and its config. does not change, then all 
the rotn. states must have even parity, and since π = (-1)I , odd values of I are forbidden. 
 
7 So in units of          , the energies of the states are separated  by 6, 20, 42, etc  

almost exactly what is seen. 
 
 
8 You can actually quantify this.  Assume it is a rigid body, so 
 
  Irigid = 2/5 MR2(1 + 0.31β) 
 
For typical mass nucleus(A= 170) this gives h2/2I   = 6 keV, right order of magnitude, but 
too small. 
 
In fact the nucleus behaves like an elastic fluid, and the radius stretches at higher energy.. 
 
 
 

NB  I  = nuclear spin QN. 
I = moment of inertia 



 

 

Lecture 10 
 
Last lecture we looked at the interesting level structure that is seen in deformed nuclei, 
and how well this was reproduced by considering collective rotations of the nucleus.  
Today I want to talk about the application of the collective model to spherical nuclei 
with even numbers of p and n. 
 
The shell model successfully gives the GS spin of these even-even nuclei as 0+.  When 
we look at the level structure of these nuclei, as for deformed even-even nuclei, there is 
always a 1st excited state with 2+.   

 
Well this is no problem 
for the SM to account for.  
Take 130Sn  (Z=50 N= 80 
with 10 neutrons in the 
h11/2 state (out of a 
possible 12).  We could 
uncouple the top pair of 
N or P and excite to the 
next level, and recoupling 
will always give even +ve 
parity states including 2+ 
(remember `18O).   
However the uncoupling 
and exciting is much 
greater in energy than the observed energy of the 2+ states. 

This excited state in this mass energy region is always less than 2 MeV, and between 
A=150 and 200, a few 100’s of keV.  There are other ways of producing the +ve parity 
states.  E.g. lift a pair of d3/2 neutrons to the holes in the h11/2 state and recouple the 
remaining neutrons in the d3/2, or excite an s1/2 neutron to the d3/2 and couple them to 
give even parity even spin states.  Etc. 
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This anomalously low 
2+ state is not just a 
property of Sn130.  
The figure shows that 
this is common in the 
medium-mass nuclei.   
This reduction in 
anticipated energy of 
the 2+ state is the 
result of collective 
motion of the nucleons 
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within the nucleus, and as we saw last lecture, for the case of deformed nuclei, these 
collective effects can be modelled by motions of the nucleus as a whole. 
 
A spherical nucleus cannot rotate (or at least QM-wise it can’t), but it can oscillate. 
 
Lord Rayleigh worked out the theory of oscillations of fluids in the 1800s. A fairly 
formal analysis for nuclei is given in Krane.  The shapes of the vibrations can be 
expressed in terms of associated Legndre polynomials Pλ.m, and the standing wave 
patterns for λ = 1,2 3 are shown (krane 5.18)  In essence λ can ve pictured as the number 
of wavelengths around the nucleus, and is the phonon quantum number. 

The dipole mode involves a physical shifting of the nuclear CM and cannot occur from 
within the nucleus.  λ  = 2 is the quadrupole mode λ=3 is the octupole mode.  The energy 
of the oscillations is quantised as phonons, and each phonon has a magnitude λh. 
 
Thus if we set the spherical nucleus into the lowest realistic oscillation it will have one 
λ=2 phonon and a spin of  + 2, since π= (-1) λ.  It is a 2+ state.  The next quadrupole 
oscillation state will have 2 λ=2 phonons, which can couple to give total AM of 0, 2, and 
4, all with π positive.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 Three λ=2 phonons can couple to 0,2,3,4 and 6 with π=+.   
Each phonon of octopole oscillation has an AM of 3, and the parity for this is –ve. 
 
Does it compare with reality 

 
 
 
 
 
Note that to 1st order, the spacing between 2+ 
and 4+ and 6+ is essentially equal: the spacing 
being the energy of one phonon. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Isospin 
This seems a bit of an interloper here, but I find it a lovely example of the symmetry of 
nuclear structure.  It reinforces the independence of the nuclear force on charge effects, 
and more importantly when we discuss beta decay it has a large role to play. 
 
Look at this  
 
 
 
This nucleus has 14 nucleons.  I know from the  
Pauli principle that at least 6 are protons, and 6 are 
neutrons.  What about the 2 in p1/2 level? 
 
They could be 2 n, 2 p, or p and n 
Let’s look at the case where they are 2 n or 2 p. 
 
(show 14C and 14O) 

1d3/2

2s1/2
1d5/2

1p1/2
1p3/2

1s1/2

What nucleus is this?



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To all intents and purposes these are the same structure.  The excited state energies and jπ 
look almost identical. 

 
Conclusion.  The nuclear wave function 
depends only on the N-N potential.  There 
is an effect due to the Coulomb force that 
affects the absolute energy of the 14-
nucleon system.  14O has a larger coulomb 
repulsion and is less massive as a result.  
It also has 2 fewer neutrons, and is also 
less massive  (mp > mn) because of this. 
 
This pair of nuclei are called “mirror 
nuclei”. 
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What about the other mass 14 nucleus 14N? 
 

It looks quite different at first glance.  But look 
carefully.   
 
(Indicate location of T=1) states.) 
 
Let’s make allowance for the energy 
differences due to the coulomb energy (which 
is different for each) and the different masses of 
p and n. 
 
 
 
 
 
 
 
The nucleus with Z protons is less stable by this 
amount rel to that with Z-1 protons. 
 

However the nucleus with higher Z has one less neutron, and a neutron mass is greater 
than a proton mass by 0.78 MeV 
 
So we can compensate for these mass-energy  differences, and when we do so we see… 
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This is the result of ISOSPIN,  T 
 
All the states in 14N that line up have T=1. The other states in 14N have isospin T=0. 
In words:  If I did not consider isospin (if I painted all nucleons grey)  all the T=1 states 
in 14N would have the same configuration as states in the other mass 14 nuclei. 
The T=0 states in 14N have no equivalent states in the other nuclei.  They are forbidden 
by the Pauli principle. 
 
Let’s formalise this. 
 
We introduced the concept of isospin for the deuteron.  We specify the isospin part of the 
nucleon wavefunction as !t,tz>   The vector t has projections t z=+1/2 (n) and t z=-1/2 (p).  
So  
!n> = !1/2,+1/2>    !p> = !1/2,-1/2>. 
 
 
Since tz determines the nature of the nucleon, the Tz of a nucleus is Σtz of all A nucleons. 
For example for 14N,  Tz = 0.   In fact we can see that Tz = (N-Z)/2.  Tz determines 
which element we have. 
 Nucleon isospin    Projections 
 

Well what about these states in mass 
14 that line up.  They all have the 
same isospin quantum number T  
(=1 in this case). 
 
How do we find the value of T? 
 
We take the configuration of the 
nucleons, and make the most 
“neutron rich” configuration of 
these A nucleons, that is consistent 
with the Pauli principle. 
 
(illustrate with vugraphs) 
 
For the configuration we 
have this most neutron-rich nucleus 
is 14O, and for this nucleus the T is Σt 
for all 14 nucleons.  Note this is a vector 
sum, so the value is T = 1   (we could 
also say that T is the value of Tz for 
this most-neutron-rich configuration) 
 
If T=1, it must have 3 projections Tz= 1, 0, -1. 
 
Tz= +1 means a nucleus with 2 nett neutrons out of 14 nucleons….   14C 

 
  t = ½   tz = + ½   tz = - ½ 
      (neutron) (proton) 
 
Isospin part of wavefunction  ||||t, tz > 
 
   ||||p>  ||||½, -½> 
 
   ||||n> ||||½, +½> 
 
For nucleus A 
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The isospin part of the nuclear wavefunction is 
specified as  

||||T, Tz > 
 
 

Vector sum 

For a given T, there are 
(2T=1) projections Tz 



 

 

Tz = 0 means Z=N………………..14N 
Tz= -1 means 2 nett protons……………14O 
 
What is the T of the GS of 14N? 
 
GS has I=1 . ie p and n are parallel, and there is no way I can change a p to an n  without 
violating  Pauli principle. 
 
So T is the value of Tz for the most neutron-rich form of this configuration.   This is it!! 
The GS and the remaining unmatched states all have T=0.  There is only one projection 
of this Tz = 0.   
 
Look at 12C as a further example . 

 
This illustrates the situation for those students who have done the 11B(p,α)12C experiment 
in the part 3 lab. 
 
Lead on to beta decay 
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