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Problems for Lecture 5 
 
1 Calculate the classical impact parameter necessary to 

give an orbital AM of l=1 for an n-p scattering event 
when Elab = 10 MeV 

 
2 Matching l=0 wavefunctions at the boundary r = c + b 

of a square-well repulsive core potential leads to the 
transendental equation K cotKb = k cot [k(c+b) + δ].  
Determine the radius of the repulsive core (c) from the 
information that the triplet S phase shift is zero for Elab 
= 350 MeV.  Use Vo = 73 MeV, and b = 1.337 Fm  
 

 

Lecture 5  Krane Enge   Cohen  Williams 
 
N-N scattering l=0  4.2/3 3.1-3 3.10   2.11, 9.9 
 phase shift     4.2  3.5  3.10 
Properties of 2-nucleon potential  
  Central       4.4    3.6  
  spin dependence   4.4  3.6  3.7 
  -s dependence   4.4    3.8 
  tensor component  4.4  2.6  3.6 
 



 

 27

Review Lecture 4 
 
 
 

The Deuteron 
 
 
1 Nuclear potential   short range attractive 
   Repusive core 
   Approximate with sqare will plut infinite repulsive core 
   assume l=0 
 
2 Solve Schroedinger Equation for l=0 1D, knowing BE of deuteron as 2.23 MeV 

 Transcendental equation gives binding for range of pot. depths and widths 
 Calculate radius of deuteron from WF and equate with observation 
 Gives another transcendental equation  

Combined, these give Vo, width of pot. well 
 
3 I for deuteron is 1 (S=1), but p and n can couple to give S = 1 (triplet S state) or 0.  
No S=0 (singlet) GS state found .  S=0 state is just unbound.  Therefore Pot. well is 
shallower (60 MeV ) for antiparallel coupling of s. 
 
4 Mag. Dipole moment less than sum of MDM for p and n (since l=0 there is no 
orbital contribution from motion of p) 
Therefore postulate that the WF for deuteron is not entirely l=0 (s-wave) 
 

 ψ = asψs + adψd  
(*) where l=2 (d wave) contribution  is about 4% 

(*) Understand what this equation means 
 
5 I for deuteron is 1 and since l=0, S = sn + sp  = ½ + ½ = 1 
 For l=2 component must recouple S=1 and l=2 to give I = 1 
This means twisting S, so nuclear pot. must have a tensor part.  Depends on θ and S as 
well as r. 
 
6 Measured Quadrupole moment is non zero, confirms deuteron must include l=2 
component in WF. (unlike l=0 WF, l=2 WF is not spherically symmetric) 
 
7 Why there is no S=0 deuteron, and why there is not dineutron or diproton. 
Paul exclusion principle does not permit 2 identical particles to have same set of Q 
numbers. 
 
8 Introduction of Isospin as a quantum number.  Nucleons have t = ½.  Tz=+1/2  is 
neutron, tz = -1/2 ia a proton. 
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Left over from Lecture 4 
The total WF is: 
 

ψ θ χ τφ=
u r

r
P e spin Tl

lm
iml( )

( ) ( ) ( )
where τ(T) is the isospin part of the WF.  This part of the WF is symmetric if the two 
nucleons are the same and antisymmetric if they are different (i.e. one p and one n). 
 
Now we can see that our WF for the GS of the deuteron is indeed valid.  We can also see 
that under these rules the WF for a di-neutron  (nn) or di-proton (pp) is NOT valid.  
 
However we must take this a little bit deeper and formalise this concept of isospin. 
 
In essence we need to think of the proton and neutron as different states of the same 
particle; the nucleon.  To specify the different states we could use coloured pens: red for 
protons and green for neutrons, and then these colours become the QN of the p and n.  In 
QM we assign a new quantum number (the isospin QN) to the nucleon. 
  t= ½ . 
This is in exact analogy to the intrinsic spin s= ½, and just as the intrinsic spin can have 
projections sz = ±½ , so can t. 
 
tz = + ½ corresponds to a neutron 
tz = - ½ corresponds to a proton 
 
 (note this convention is the opposite to that used in particle physics) 

The isospin quantum state of a nucleon pair is the vector sum of their isospin .  That is, 
the state can have T=0 or T=1, ie a singlet or triplet isospin state. 

 

 
 
 
 t 
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Just as the singlet S state (S=0) can have only 1 projection (Sz=0) and the triplet S state 
(S=1)  have 3 projections (Sz = -1,0,+1); 
so there is only one state associated with the T=0 (singlet) isospin state Tz=0.  The T=1 
(triplet) state has 3 projections Tz= -1,0,+1. 
 
What does Tz mean?  Tz = ∑tz.  So  Tz= 0 means  a p and a n. 
     Tz= +1 means 2 neutrons 
     Tz= -1 means 2 protons 

 

 
Now let’s look again at the 2-nucleon wavefunctions possible for the deuteron. 

 
 
 
 

T  z=-1 
diproton 

T  z=+1 
dineutron 

T  z=0 
deuteron

T=1 
 

S  z=-1 
 

S  z=+1 

S  z=0 
S=1 
 

 

 
So we see that there are 4 possible combinations that are 
allowed for a 2-nucleon system. 
 
1.  is the bound state of the deuteron 
 
3. is a legal state of the deuteron, but we found that this 

is unbound by about 60 keV.  This led us to the 
important discovery that the nuclear central force 
depends on the spin orientation; the potential is 
shallower for anti-parallel spins.

 
3 and 4 are legal states, but clearly if 2 is unbound so  
   are they. 

ψ θ χ τφ= u r
r

P e spin Tl
lm

iml( ) ( ) ( ) ( )

1 =0    S=1          T=0         deuteron 
 symmetric symmetric  anti-sym  ANTI 
 
2 =0    S=0          T=1 (Tz=0) deuteron 
 symmetric anti-sym      symmetric ANTI 
 
3 =0    S=0          T=1 (Tz=+1) dineutron 
 symmetric anti-sym     symmetric ANTI 
 
4 =0     S=0          T=1 (Tz= -1) diproton 
 symmetric anti-sym     symmetric ANTI 

2 
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Lecture 5 
 

Scattering 
You might note that we can only find out about the (S=1,T=0) combination of the 2 
nucleons from our study of the deuteron.  To learn about the (S=0,T=1) couplings we need 
to study the effects of scattering between the nucleons.   (the info about the unbound 
singlet (S=0) state that I gave you really comes from scattering data). 
 
In studying the bound state of the 2-nucleon system (the deuteron) we have only found out 
the properties of the nuclear force for the case of p and n coupled to S=1, and for them in a 
state with l = 0. In scattering we can have nucleon pairs of all combinations (pp, pn, nn) 
with all possible spin alignments (S=0, S=1) , and passing with all values of l (selected by 
the incident energy). 
 
We already have indications that the nuclear force is complicated.  We saw that there was 
a tensor component that was present for S=1 (not of course for S=0).  We also concluded 
that for S=0 the potential was less deep, since the S=0 state of the deuteron is unbound.   
 
In scattering, the effect of nucleons coming into close proximity with the nuclear force will 
affect the incident wave. It produces a phase change, so that interference effects will 
produce a probability distribution for the scattered particles that can be analysed in terms 
of the potential-well depth and shape. 
 
The analogy with optical scattering around an object is very close.  The wavelength (in this 
case the debroglie wavelength) and the object have to be of the same order. 
 

 
 

 
 

 
 
 

In N-N scattering, the incident particle is considered to be a plane wave with wavelength 
dependent on its momentum.  After encountering the nuclear potential there is an outgoing 
spherical wave as shown.   Well away from the potential we will see interference effects, 
which we will observe as an intensity distribution as a function of angle.   
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The interference is the result of a phase shift induced by the nuclear potential.  The 
magnitude of this shift is directly relatable to the form of the potential. 
 
How do we quantify the scattering probability?  How can we categorise it as a function of 
say the energy of the incident particle energy? How do we categorise the scattering 
probability as a function of the angle of scattering?  We need to have a means of 
comparing the data with theoretical predictions. 
 
Hence I want now to define the term used to quantify this…the scattering cross section. 

 

Reaction Cross section 
 
 

So the number scattered in thickness t is 
 
 
 
 
 
 
 
 
 

For a thin target the number scattered is  No nσσσσ t 

n nuclei per 
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Nuclear Cross section 
For scattering, as for all nuclear reactions, we use a characteristic called the Cross Section.  
Although for many situations the “cross section” is close to the physical cross section of 
the target nucleus, it should not be seen as that. It is like the “effective” cross sectional area 
of the interacting target/projectile cross section.     
If life was simple and we were throwing balls at coconuts the cross section is always the 
same.  For nucleon scattering the cross section we will see that σ varies with several 
variables, particularly the energy of the incident particles 
 
The usual unit of cross section is 10-28 m2 , which is approximately the physical area of a 
nucleus.  In a kind of physicist dry humour, 10-28 m2 is assigned the name “barn”. It was 
thought the chance of a neutron hitting a nucleus of this cross section was about as easy as 
hitting a barn door with a shotgun. 
 
Scattering Experiments 
 
What we are going to do is direct a beam of neutrons onto a target of protons, or a beam of 
protons onto a target of protons, and see how many of the incident particles are scattered 
out of the beam.  The experiment is in principle very simple. 

Effective area of nucleus for scattering at angle θθθθ is dσσσσ. 
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The questions we need to ask are : 
 
1 How do we do it? 
 

a where do we get the beam of protons of known energy from? 
b where do we get a beam of neutrons of known energy from? 
c where do we get a target of protons from? 
d how do we detect the particles that do not get scattered out, or 
 conversely how do we measure the particles that are scattered? 
e how do we quantify the probability of scattering? 
 

2  How does the scattering occur and what does it tell us about the  
nuclear potential?  We will discuss this in some detail next lecture. 

 
The first set of questions is the nuts and bolts of experimental nuclear physics.  We need 
the toys to do the measurements to feed the data to the theorists. 
 
a Protons are of course the nuclei of hydrogen atoms. So to get protons we simply 

strip off the electron (usually with a combination of heating and magnetic field).  
Having got a charged proton it is simply a matter of putting it between a high 
electrical potential and voila! energetic protons. 

 
The part-3 proton accelerator is a simple example, which provides protons with energy of 

200 keV 
 
 
The Pelletron in the basement is an example of a more energetic accelerator, providing 
protons of 3 MeV.  The positive terminal in this case is charged by charge carried up on a 
pelletised belt.  The energy is determined by the potential at the source. 
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There are cyclotrons that accelerate protons by alternating HF electric fields, while 
confining the protons to move in a circular orbit.  

b You cannot accelerate neutrons, they have no charge, so if one wants a beam of 
neutrons they have to be produced by a nuclear reaction.  The energy of the neutron 
is usually measured by measuring the time it takes (usually nano sec) to cover the 
distance from where it is produced to where it interacts. 

 
c You can’t collect protons as such, together to make a target from which to scatter.  

However a target of hydrogen is ideal (either gaseous or liquid).  The electrons will 
be unseen by any neutrons incident on the sample (why?), and if protons are being 
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scattered the effect of an electron on the proton with a mass 1/2000 times larger is 
like the effect on a truck of hitting a basketball. 

 
d Detecting protons is not difficult.  They ionise matter and this ionisation can be 

measured. In the part 3 lab, in the part-3 nuclear lab you use solid state detectors to 
detect α particles.  They work equally well for protons.  Scintillation detectors such 
as NaI also can be used. 

 
llll=0 Scattering 
We are now in a position to see what quantum scattering theory predicts for scattering of 
say protons from neutrons.  We could do this for other than =0.  In fact if we want to find 
out the full nature of all the terms in the nuclear potential this would have to be done.  I 
refer you to Chap 3 of Enge or Chap 4 of Krane, if you wish to follow this further, and the 
notes from Eisberg and Resnik that I have given you..   
 
You should note that the assumption of is quite valid up to nucleon energies of a few 
MeV.

To see this imagine a neutron of momentum p approaching a proton at an impact 
parameter of  b (about 1 fm. The range of the nuclear potential).  
 

 
 
The Quantum AM is )1( ++++llh . Which if we put l=1 gives about 10-15 ev-sec. The 
classical AM = pb.  At 10 MeV (lab) = 5 MeV (CM) the classical AM is  b.(2mE)1/2 which 
gives ~ 0.6 x 10-15 ev-s.  Much less than the case for l=1.  So at 10 MeV we can assume, 
on this semi-classical argument that the relative AM is l=0. 
 

 
 

I want you to check this 
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Remember that the object of studying the scattering of p-n , p-p, is to find out the 
dependence of the nuclear potential on , and S.  You will recall that the only combination 
we got from the study of the deuteron was S=1 =0 for p and n.  S=0 with =0 violated the 
Pauli principle.  We can however get all the terms from scattering experiments. 
 

What might we expect the scattering cross section to look like?  First we should expect a 
classical diffraction pattern.  However if λ is>> than the size of the scatterer, we should 
expect a very broad forward diffraction maximum, close to an isotropic scattering pattern.  
This is the case of a long wavelength sound wave being emitted from a small speaker. 
 
Firstly lets look qualitatively at what we might expect. 
 
The (time independent) wavefunction of a beam of particles in free space is   
 

 

where K m V E= +1 2 0
h

( )  

 



 

 37

This change is manifested as a phase change vetween the unperturbed and perturbed 
wavefunction  ,  δ.  So a measurement of δ will tell us the nature of the scattering potential.  
How can this be achieved? 
 
The very process of scattering says that some of the particles in the incident beam will, as a 
result of encountering the nuc. Pot., be removed from the beam, and appear at a different 
angle.  The first suggestions should be to measure the number of scattered particles  (the 
scattering cross section), and relate this to the theoretical calculation. 

 
 
 
The interference resulting from a plane wave and a spherical wave is most easily 
calculated if we express the plane wave as a sum of spherical waves  
 

)()( 0,0
cos θθθθϕϕϕϕ θθθθ

l
l
l l YrBee ikrikz

in ∑∑∑∑============ ∞∞∞∞====
====  

 
The radial function B is a sum of spherical bessel fns and looks like Fig 3.5 (Enge). 
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As long as kr < 0.7  the l=0 contribution is by far the most important.  We have seen that 2 
nucleons with energy ~ 1 MeV passing within the range of the nuc. Pt. will have l=0.  So 
let’s limit our discussion  to low-energy scattering.  You will see that the angular distn is 
determined by Yl0, (fig 3.6), l=0 we assume no angular dependence Ylm! (1/4π)1/2. 

 
 
For l=0  

ikr
ee

kr
kr ikrikr

in 2
sin −−−−−−−−========ϕϕϕϕ      equ 1 

The first term (with the time dependence added) represents a spherical wave emerging 
from the scattering centre.  The other term is a wave converging on the centre. 
 
The diverging wave has experienced the effect of the nuc. Pot. And has suffered a phase 
change which is for mathematical reasons written as 2δ. 
 
So  

ϕ
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2
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Just as for equ 1, there are two terms here the first represents the outgoing wave after 
interaction with the nuc. pot.  The other is the incoming wave.  Taking the difference 
between equ 1 and 2 leaves only the outgoing wave, and the consequent interference. 
  

ϕ = − −e e
ikr

ikr ikr

2
   -

e e
ikr

i kr ikr( )+ −−2

2

δ

    

         
e

kr

i kr( )
sin

+2δ
δ

 

This is a wave of amplitude 
sinδ
kr

 moving away from the scattering centre. 

The number of particles with vel v,  carried by this wave per sec. is got by integrating over 
the sphere: 

v
k

N sc 2

2sin4 δδδδππππ====  

the scattering cross section is the flux of scattered particles divided by the incident flux, so 
that 

σ π δ= 4 2

2
sin
k

 

 
Note again that for l =0 there is no angular dependence. 
 
The theoretical cross section is obtained by finding δ. 
 
This value is obtained  by joining the wave function of the scattered wave back at the 
potential. 
 
For r>c we have ψ = Bsin(kr + δ), and for b<r<c we have ψ = AsinKr 
Matching the magnitude and the deriviatives gives the transendental equation 
 

K cotKb = k cot [k(c+b) + δ] 
 

Using the values that we used in solving the deuteron  
 
V0= 73 MeV (determines K for a given E) 
b= 1.34 fm 
c= 0.4 fm 
gives values for δ as a function of E. 
 
The theoretical value is about 5 mb.  The result for the measured cross section is shown 
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We see that the theoretical 
value is significantly below 
the measured value at low 
energies.  Why is this? And 
what does it tell us? 
 
We did the calculation using 
the parameters that gave the 
bound deuteron.  This 
arrangement of n-p was 
parallel spins for n and p: 

S=1.  However in scattering we are not limited to S=1, we also have S=0.  As we noted 
before, the nuclear potential for S=0 is smaller than for S=1.Recall the S1 state of the 
deuteron was unbound.   If we assume that the large difference is due to singlet scattering 
we can determine the relative strengths of σ3 and σ1. 
 
As the neutron, with spin ½ approaches the proton in the target (with spin  
s = ½ , the probability of coupling to 1 is 3 times that of coupling to 0.  
 
Thus the measured cross section is 
σσσσ = ¾ σσσσ3 + ¼ σσσσ1.   

We have calculated σ3 to be about 5 b, since we used S=1 parameters.   
So   20 b = ¾ (5 b) + ¼ σσσσ1 
      ¼ σσσσ1 = 20 - ~4   = 16 b 
So that σ1 ~ 64 b.   
 
This is a huge difference, and an important indication of the difference in the singlet and 
triplet components of the nuclear potentials.  This confirms our observation from the fact 
that the S1 excited state was less bound than the S3, that the nuclear force must be spin 
dependent. 
 
It would be unfair of me to suggest that we 
have really covered N-N scattering.  Most of 
the information about the nature of the N-N 
force was obtained from more complicated 
scattering than =0.  I do not intend to cover 
that.  You will find it in Enge Chap. 3 and 
Krane Chap. 4.  
 
At higher values of  the interference pattern 
becomes more complex, and the analysis 
more difficult (and more subjective). 
 
Suffice it to say that at higher energies the -s 
components can be found, and as the energy 
gets higher the nucleon probes closer to the 
repulsive core, and this can be resolved. 
 
 

fig 4.6 Krane 
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