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Questions Lecture 7 
 
1 Give the expected shell-model spin and parity assignments for the ground states of 

7Li, 11B, 13C, 17F, 31P,
  141Pr. 

 
2 Plot the shell-model potential for l=0 protons, and neutrons in 208Pb. 
 
3 The low-lying states of 13C are: GS ½-, 3.09 MeV ½+ , 3.68 MeV, 3/2,.-3.85 MeV, 

5/2+  The next states are above 7 MeV.  Interpret the low-lying states in terms of 
the shell model. 

 
4 Calculate the values of the mag. Dipole moments expected from the shell model, 

and compare with the exptal. values for 75Ge, 87Sr, 91Zr, and 47Sc. 
 
5 Why are there no magic numbers that are odd? 
 
6 10B has GS spin and parity 3+.  Show that the mass, charge, spin, and parity are 

consistent with a nucleus containing Z protons and A-Z neutrons.  Which of these 
properties disagrees with the assumption that nuclei contain A protons and  A-Z 
electrons? 

 

Lecture 7    Krane Enge  Cohen Williams 
Shell Model    Ch 5 6.2-    ch. 4 Ch 8 
 complex nuclei  5.1  6.4-7   ch 5 8.3/4/5 
 Ang mom coupling 2.5  6.3     5.13 8.3/4 
 ground-state spins  5.1  6.4     4.5 8.6  

excited states   5.1  6.5     5.8 8.9 
 magnetic moments 5.1  6.6     7.4 8.7 
 quadrupole moments 5.1       7.5 8.8 
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Review Lecture 6 
 
 
1 Evidence for meson exchange from  forward peaking of n-p scattering at high 

energy. 
 
2 Yukawa’s OPEP (one pion exchange potential) 
 
  
3 Creation and annihilation of virtual π mesons at surface on nucleons. 

allowed within the Heizenberg uncertainty limits. ∆E.∆t ~ h .  Understand that for 
π mass of  140 MeV/c2, the range is~1.4 10-15 m,       1.4 fm 

 
4 Exchange of these field particles between nucleons communicates nuclear force. 
 
5 a proton can have in its meson field either a π+ or a πo, but never a π -.  A neutron 

on the other hand can have in its meson field either a π- or a πo, but never a π+.  
 
6 Recall the charge distribution within π meson, and note why nucleon mag. 

Moments are so large. 
 
7 Exchange of field particles leading to attractive force is a quantum effect (viz 2H+ 

ion) 
 
8 Note that the solution of Klein-Gordon equation for massed particles gives N-N 

potential (cf solution of Laplace equ gives electrostatic pot) 
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Lecture 7 
 
 
The Shell Model 
Today I want to introduce the single particle or shell model of the nucleus.  It is one of 
the most successful, and as we shall see one of the most useful models available to us.  It 
assumes that we can treat every nucleon in a nucleus as if it were confined by the average 
potential of all the other nucleons in the nucleus.  It bears a great similarity to the shell 
model of the atom that you have known for several years, and have covered in some detail 
this year. 
 
There is however something a bit strange if you think about it.  In the case of the atom, 
there is a known central force that provides the potential for the “circulating” electrons.  In 
either the semi-classical of quantum description of the atom the picture of the electrons 
forming shells around the central nucleus is there.  This is somewhat harder to visualise in 
the case of the nucleus.  Here the potential is provided by the nucleons that are internal to 
the nucleus.   
 
Probably a more important question to raise, how can we have an “average” potential 
which must have a radius of the nucleus (~A1/3), which is much bigger in general than the 
range of the nuclear force, which we have agreed is about 1.4 or so fm?  And equally 
difficult to visualise is the idea of nucleons in the closely packed nucleus “orbiting 
round”? Surely they would collide so often that the concept of an orbit is far from the 
truth. 
 
Well, if you wish to visualise them in orbits (and we will find this very useful) you should 
be reassured that in the quantum system the nucleons are all assigned unique energies.  
Although they might interact with other nucleons, there can be no change in energy, and 
we might well consider that the collisions did not occur.   
 
As to the width of the shell-model potential we must consider that the nucleons, although 
limited to a nucleon-nucleon potential of only about 1 fm, do interact in their “orbits”, 
one nucleon at a time with all the nucleons in the nucleus.  Thus the concept of an average 
nuclear potential is valid.   
 
So the model is based on the premise that : 

 
What does this potential look like? 
 
1 Basic form 
It must be based on the N-N potential (Vo) we have discussed previously.  However since 
it involves interaction with all of the nucleons, the depth should reflect the density of 
nucleons.  Our discussion in lecture 1 of the results of electrons scattering showed that 
 

from the standpoint of any one nucleon, the forces acting on it by all 
the other nucleons in the nucleus can be represented to first 
approximation by an average potential—the shell theory potential 
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so the form of the potential is 
 

V V
r R a

= −
+ −

0
1 exp( ) /

 

 
Vo is about 60 MeV  
R~1.3 A1/3 fm 
a is the skin thickness ~0.65 fm 
 
2 Coulomb effect for protons 
There will be a decrease in the depth of the 
potential for protons, due to the interaction with all 
the other protons.   To 1st order we can consider this 
coulomb potential to be that of a uniformly charged 
sphere. 
 
 
 
 
 
 
 
 
 
3 Spin-Orbit interaction 
Because we considered mainly the p-n system in an 
=0 AM state, I did not raise the dependence of the N-
N potential on the relative alignments of  and S.  The 
fact is that the potential is deeper (nucleons more 
strongly attracted) if the  and S are aligned parallel, 
and less deep if they are aligned opposing. This is in 
direct analogy with the alignment of the s for the 
nucleons in the deuteron. In the nucleus it is the  
relative to the nucleus that is involved.  
 
 
 
Solution of Schroedinger’s equation for a finite 3D  square well 
We can see that the potential is approximated by a square well, and it is this approximation 
that is made.  So the allowed quantum states are obtained by solving the Schroedinger 
equation for a 3D square well, which you have studies, or know the solutions for. 
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2
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Vo ~ 60 MeV 
R  ~ 1.25 A1/3 fm 
a ~  0.65 fm 
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r
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1 Basic form 
It is based on the N-N potential (Vo) 
we have discussed. 
However since it involves interaction 
with all of the nucleons, the depth  
should reflect the density of nucleons.   
 

V V
r R a

==== −−−−
++++ −−−−

0
1 exp( ) /

 

 
Vo ~ 60 MeV 
R  ~ 1.25 A1/3 fm 
a ~  0.65 fm 
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r 
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For neutrons 

For protons 

Coulomb effect 

2. Coulomb effect for protons 
There will be an decreased potential depth 
for protons due to the repulsion with all 
the other protons.   To 1st order we can 
consider this coulomb potential to be that 
of a uniformly charged sphere. 
 

 
 
Vo ~ 60 MeV 
R  ~ 1.25 A1/3 fm 
a ~  0.65 fm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Energy 

r 

-Vo 

R

↓↓↓↓↑↑↑↑ sl

↑↑↑↑↑↑↑↑ sl

Spin-orbit effect 
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Where V is the shell model potential. 
 
However the solutions will be for states with different AM  , so the 
potential must include a centripetal term, so that the potential becomes: 

 
 
 
 
Discuss the meaning of the quantum states, 
show the complement of states 
 
 
 
 
 
 
 

 
 
 

Discuss coupling of  and s to give j. 
Show effect of -s correction to potential well 
 
Discuss grouping of levels and magic numbers. 
 
 
 
 
The level sequence has been confirmed in a 
number of ways that we will discuss 
shortly. 
 
 

Show 2.4 Cohen 

Show 4.5 Cohen 

=1
s=1/2

j=1/2

j=3/2

=1

s=1/2

Vector Coupling of Angular Momentum

and s to give j

In nuclear systems it is j that is good quantum number

j = s  (vector sum)

2

2

2
)1(

mr
llVo

h++++++++
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The filling of the states 
 
Let’s just recap a few matters before moving on. 
 
I want you to note that the reason the states with >0 split in energy is the result of the  .s 
component of the N-N potential.  For  and s parallel the potential is deeper and for  
antiparallel to s, it is shallower.  
 
Remember that j =  + s, so that the state with  and s parallel has the larger j, and is lower 
on the shell model level scheme. Recall the deuteron s=1 (parallel) has deeper pot well 
than S=0 (antiparallel). 
 
The other thing to remember is that because the  .s coupling is so much stronger in the 
nuclear case compared to the atomic case, it is j that is the good quantum number in 
nuclear physics, not  or s.  So that when we work out the total AM of a nucleus with more 
than a single unpaired nucleon we will vector-sum the values of  j. 
 
The filling of the states 
The level scheme we have seen indicates a set of quantum states available to nucleons as 
components of a nucleus.  The object is, for a given nucleus specified by A, Z and N, to 
place nucleons in these states in order to produce the most stable (lowest energy) nucleus.   
 
In doing this we must not violate the Pauli exclusion principle.  We discussed this and 
indicated that this meant that the total wave function for any individual indistinguishable 
nucleon must be anti-symmetric.  In practical terms this means that each nucleon must 
have a unique set of quantum numbers. 
 
What quantum numbers do we have available. 
 Z = 0 (s),    = 1 (p),    = 2 (d) etc 
s ½ 
t ½  tz =+ ½  ( neutron)  tz= - ½  ( proton ) 
However in the nucleus  and s combine to give j, where  j =  + s (see figure previous 
page), and it is QN j that determines the state. 
 
j has 2j + 1 projections of mj  
on to the the z axis.  So there are 
for any state specified by QN j, 
2j + 1 sub states with different 
QN mj.  The vugraph shows 
how this might be envisaged in 
terms of precessing AM vectors.  
This may or may not be helpful 
for you.  But this is why I will 
often draw in the nucleons in a 
given j-shell as ⇑⇓.  The 
nucleons DO pair off  (+mj, –
mj) as they are added to a 
nucleus in order to minimise the 

mj

+5/2

+3/2

+1/2

-1/2

-3/2

-5/2

j = 5/2  llll =2

j = llll +s

Number of values of mj = 6

in general (2j + 1)

different quantum states
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energy of the system.  We saw in an earlier lecture that the Sn for even N or Z nuclei was 
greater by several MeV than the Sn for odd nuclei. 
 
Thus in a sub-shell with j = 3/2 we can put 2 x 3/2 + 1 = 4 protons, each having a unique 
assigned mj. 
 
We can also put in 4 neutrons even though a neutron and a proton will have the same value 
of mj .  This is because there is another QN associated with the nucleon itself: its isospin.  
So each n has an isospin QN  tz of +1/2, and each p a tz = -1/2.  So we can have up to 2j 
+1 protons and 2j+ 1 neutrons in each subshell. 
So we can see why the magic numbers occur at the values they do. 
 
 
As an example take 4He.  A=4, N=2, Z=2.  The lowest available unoccupied shell is the 
1s shell.  Here j = ½.  

 
 n1 n2 p1 p2 

mj  +1/2 -1/2 +1/2 -1/2 
 

tz +1/2 +1/2 -1/2 -1/2 
 

 
 
The next major shell closes at n = 8   
2 p and 2 n in s1/2! 4  4He 
2 p and 2 n in p1/2 ! 4  16O 
 
and so on to n = 20 ! 40Ca 
 
 Ground state spins of odd N or Z nuclei 
The spin I of a nucleus is the vector sum of the AM j of all the nucleons in it. As 
mentioned protons will pair off, and neutrons will pair off so that a nucleus with Z even 
and N even will have a spin I = 0, and even parity, eg 4He, 12C ,16O. 
 
In a nucleus with a single unpaired nucleon the 
nuclear spin is that of the unpaired nucleon.  i.e. I = j. 
 
 eg  5He, n in 1p3/2 shell   I = 3/2 
  5Li p in 1p3/2 shell I = 3/2 
  13C n in 1p1/2 shell   I = ½ 
  17O n in d5/2 shell  I = 5/2 
  17F p in d5/2 shell  I = 5/2 

 

1d3/2 

2s1/2
1d5/2 

1p1/2 
1p3/2 

1s1/2

Neutrons   Protons 

4He 
configuration  (1s)2 νννν(1s)2 

 

1d3/2

2s1/2 
1d5/2

1p1/2
1p3/2

1s1/2 

Neutrons    Protons 

5He 
configuration  (1s)2 νννν(1s)2(1p3/2)1 

or       4He + νννν (1p3/2)1 
or just      (1p3/2)1 
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1 s 1 /2

1 p 1 /2

1 p 3 /2

1 d 3 /2

2 s 1 /2

1 d 5 /2

1 s 1 /2

1 p 1 /2

1 p 3 /2

1 d 3 /2

2 s 1 /2

1 d 5 /2

1 6 O

G S  I = 0

1 s 1 /2

1 p 1 /2

1 p 3 /2

1 d 3 /2

2 s 1 /2

1 d 5 /2

1 s 1 /2

1 p 1 /2

1 p 3 /2

1 d 3 /2

2 s 1 /2

1 d 5 /2

1 7 O

G S  I = 5 /2 +

1 s 1 /2

1 p 1 /2

1 p 3 /2

1 d 3 /2

2 s 1 /2

1 d 5 /2

1 s 1 /2

1 p 1 /2

1 p 3 /2

1 d 3 /2

2 s 1 /2

1 d 5 /2

1 5 O

G S  I = 1 /2 -
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