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Questions Lecture 9 
 
 
1 The GS configuratioPn of 18F is (1d5/2)π(1d5/2)ν (where π and ν indicate proton 

and neutron), outside a core of 16O.   
(a) What are the possible values of Iπ for the states that could be formed? 
(b) What would be the Iπ for the states associated with the GS configuration of 
18O? 
 

2 (a)  On the basis of the simple shell model, 
what would be the GPS Iπ for 9F19,  10Ne19, 
and 11Na23? 
(b) Explain why the measured values are    

½ +, ½+, and 3/2+ respectively. 
 

 
 
 
 
 
 
 
3  Shown is the level diagram for 166Yb.   

(a) What model best explains this structure? 
(b) Calculate the moment o inertia of 166Yb on 

the basis of the spacing between the GS and 
2+ state, and between then 8+ and 10+ states. 

(c) Explain the difference if any. 
 

Lecture 9    Krane Enge  Cohen Williams 
Shell Model    Ch 5 6.2-    ch. 4 Ch 8 
 quadrupole moments 5.1       7.5 8.8 
 deformed nuclei  5.3  6.8     6.4 
Collective models   5.2  6.9-10  ch 6  8.10 
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Review Lecture 8 
 
Shell Model 
 
 
1 Filling of the states. In doing this must not violate Pauli principle.  J has 2j + 1 

projections (mj) onto the z axis.  So there are, for any state specified by QN j, 2j+1 
sub states with different QN mj. 

 
2 Be able to define the configuration of the GS of even-even nuclei, and nuclei with 

one unpaired nucleon. 
 
3 Understand the configuration of excited states with one unpaired nucleon. 
 
4 Coupling of AM vector j of all unpaired nucleons to give spins of low-lying states.   
 
 
5 The unavailabity of certain couplings that are forbidden by the Pauli principle..e.g. 

18O. 
 
6 Magnetic dipole moments for single particle shell-model nuclei 

µ = g l units of NM  g = 1 for a proton g  = 0 for a neutron 
µ  = gs  units of NM  gs = 5.585 for a proton gs = -3.826 for a neutron  
 
Note that it is l that is important in producing the dipole moment.  In the nucleus it 
is the total AM j that is a conserved quantity and l and s are not good quantum.  So 
that when the nucleus is put into a magnetic field it is vector j that starts to precess 
with fixed values of jm along the z axis.  Thus the observed mag moment is  µobs = 
g mz max = g j. This will be the projections of µs and µl on to the z axis.  The vectors 
 and s have sharp projections on to the direction of vector j, so that the value of the 
intrinsic MM µint can be found. 
 

7 Two couplings of l and s stretched  = j- ½, and jackknife  = j + ½ 
The limits for µ are called the Schmitt limits. 
Examples  17O  j = 5/2+ due to d5/2 neutron 13C  j = ½-  p1/2 neutron 

 
 
 
 



 

Quadrupole moments for single-particle nuclei 
 
You may recall from lect 3 that the electric quadrupole moment was defined as: 

Q e z r dV==== −−−−∫∫∫∫1 3 2 2/ ( ) ]ρρρρ   units of area  
usually barn (10-28 m2). 

Where ρ is the charge density distribution. 
 
Can the shell model make any statement about the values of Q? 
 

Well in the case of a nucleus with a 
single unpaired proton it should.  Shell Model and Electric Quadrupole Moment

F
H

A
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Remember only protons can 
contribute to Q. 
If the proton is an orbit of given j, 
its maximum projection mj will put 
vector j close to alignment with the 
z axis.  In which case the proton will 
be in orbit in the x-y plane.  From 
the equ above this will give a -ve Q, 
and its value will be close to the 
expectation value of the radius of 
the nucleus. 
 
Ie Q = -<r2> 
 
In a more correct quantum 
mechanical treatment (see Meyer 
and Jenson “Elementary Theory of 
Nuclear Structure p 231) 
 

Qsp = - 
2 1
2 1

2j
j

r−
+

 

for a uniformly charged sphere <r2> 
= 3/5R2 = 3/5 ro

2A2/3  (ro ~ 1.2 fm) 
 

If a single unpaired proton gives a -ve Q, a missing proton,  (a proton hole should lead to a 
+ve Q. 

What about the unpaired neutron 
case?  Neutrons have no charge and one 
would expect no contribution to Q. 
Well imagine a neutron whizzing 
around the nucleus.  Because of the 
nuclear force it will pull out a tide of 
nuclear matter, again in the x-y plane.  
So again we might expect a -ve Q  
(actually a small effect) 
 
eg 17O  calc-0.038  measured -0.026 
 

Q e z r dV==== −−−−∫∫∫∫1 3 2 2/ ( ) ]ρρρρ
unit area
barn (10-28m2).

For an unpaired proton (outside a closed shell)

with quantum number j

equ above gives a -ve Q,
value will be close to.

 Q ~ -<r2>

More correctly

Qsp = - 
2 1
2 1

2j
j

r−
+

Approximating the nucleus as a uniformly charged
sphere

<r2> = 3/5R2 = 3/5 ro
2A2/3  (ro ~ 1.2 fm)

-------------------------
For a proton MISSING from a closed shell
(i.e. a proton hole)

Q ~ <r2>  but +ve

j Q is –ve

e.g. 19F

Q is +ve

e.g. 27Al

(28Si – p)
 

Predictions  for Q for neutrons
or a single neutron outside a closed core, we expect Q=0.
owever the neutron attracts the protons and makes a ridge

gain Q is –ve

 neutron hole leads to +ve Q

j
Q is –ve

e.g. 17O
(16O + n)

calc –0.038
meas. –0.026
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Strongly deformed Nuclei 

 
As you can see most 
nuclei are not spherical.  
Some have extreme 
deformations, 
particularly as A gets 
larger.   
 
 
 
 
 
 
 
 

The Shell model can account very well for GS spins and parities, some excited states 
properties, selected magnetic moments and quadrupole moments, of nuclei that are near 
closed shells, however we shall see that it fails for nuclei with large deformations. 
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We understand how the Shell model can account very well for GS spins and parities of  
the GS of many nuclei.   

! e.g. closed shells 0+ 

! unpaired nucleon spin is spin of nucleus   
      e.g. 5He,  13C, 17O 

Its ability to account for the measured magnetic dipole moments and electric quadrupole 
moments is limited, but acceptable for nuclei near closed shells.  We will now look at 
variations of the model for deformed nuclei, away from closed shells. 
 
 
Look at 19F   
 
 
Z= 9 N=10 
 What do we expect?===#  5/2!! 
 
 What do we see===#  ½!! 
 
Why? 
 
19F is deformed, and if you recall our discussion of 
the shell model assumed that the nucleons move in a 
potential that is the average of all the potentials of 
the component nucleons.  If the nucleus is spherical 
this potential is also spherically symmetric, and the 
solution we discussed was valid. 
 
However as soon as we have a significant distortion of the mass (and charge) distribution, 
as indicated by the measured electric quadrupole moment, we have a potential that is no 
longer spherically symmetric, but axially symmetric. 
 
Essentially Nilsson who was a student of Neils Bohr of Copenhagen University solved this 
shell model for deformed nuclei. 
 

1d3/2

2s1/2
1d5/2

1p1/2
1p3/2

1s1/2

Neutrons Protons

Ground-state jππππ

Prediction….5/2+

Observed…..1/2+ ???????

The shell Model so far

How good is it???

PropertyPropertyPropertyProperty adequacyadequacyadequacyadequacy limitationslimitationslimitationslimitations
Ground-state spin aaa
Ground state parity aaa
Excited state j ππππ aa

Complicated for more than 1
unpaired nucleon

Magnetic dipole moment a
Only those near closed shells
agree with Schmitt limit

Observed quadrupole moment a
Generally gives correct sign
for closed-shell+1 nuclei
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For a deformed nucleus you can 
imagine, in a semiclassical picture, that 
as a nucleon moves around its orbit it 
will find the potential different due to 
the deformation of the nucleus.  Q 
mechanically the probability 
distribution will lead to the same effect . 
 
As a result, the energy of the state will 
change depending on the degree of 
deformation.  Importantly the energy of 
the sub states of a given j will be 
different, since they correspond to 
different orientations of the orbit within 
the nucleus. 
 
A qualitative explanation for this 
splitting of orbits of a given j is given 
below. 
 
From the figure one can see that for a 
+ve Q nucleus (Prolate or football 
shaped) the orbit with the largest 
projection of j on to the symmetry axis,  
(here called Ω) intercepts fewer 
nucleons in its orbit.  The nuclear potential, which is the average of all interaction, will be 
less than for a spherical nucleus.  By contrast an orbital with the lowest projection, the 
nucleon will interact with more other nucleons: the potential will thus be deeper, and the 
energy of the orbital lower.  So for +ve Q nuclei the substates with lower mj (actually Ω in 
Nilsson’s theory) will be lower in energy. 
 
For –ve Q nuclei (oblate or cushion shaped), the opposite happens.  This is shown in the 
lower part of the figure. For example, for + def.  p ½ is bound more p3/2 less.  For –ve def.  
the inverse. This is understandable in terms of the effective potential (force ) when we 
consider the orientation of the orbit. 
 
   

Now what does this suggest for GS spin of 
19F?     ½+!! 
 

∆∆∆∆R R

δ δ δ δ = ∆∆∆∆R/R

A measure of deformation
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Extremely deformed nuclei 
 
 
As we said no model covers every 
nucleus.  When we look at the Q of 
nuclei we see many heavy deformed 
nuclei.  The easiest model to describe 
them is a collective model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lets look at the level structure of some even-even nuclei (fig 6.17 cohen) .  A=140-200 or 
so.  Stripping away some of the low-lying states we see. 
 
 
 
 
 
 
How does this lovely sequence 
come about? 
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These nuclei have significant 
deformation,, so they look like … 
 
 
 
 
The GS since even– even is 0+.  
What about the 2+ 4+ etc. 
 
It turns out that the excited states 
correspond to rotation of the 
nucleus as a whole about one of 
the axes other than the symmetry 
axis.  Rotation about the 
symmetry axis cannot be seen, but 
rotation about the other axes can.  
(We can see if a football is 
rotating end over end.) 
 
 
 
Classically   AM     L= IIIIωωωω   
 
And E = ½ I ω2 = 

 

 

In a Q mech system h)1( ++++==== IIAM  
 
So energy of states is 
 
 
E =         #                 
  
 
Where I = 0, 2, 4, 6, etc 
If GS is even parity and its config does not change, then all the rot. states must have even 
parity and since π = (-1)I  odd values of I are forbidden. 
 
So in units of            , the energies if the states are separated   by 
 
6, 20, 42, etc  almost exactly what is seen. 
 
We can actually quantify this 
 
If we  assume it is a rigid body, so 
 
  Irigid = 2/5 MR2(1 + 0.31β) 
 
Now, for your typical mass = 170 nucleus, this gives 
h2/2I   = 6 keV ,right order of magnitude, but too small (15 keV). 
 

Symmetry
axis

Prolate
+ve Q Mom.

Oblate
-ve Q Mom.

∆∆∆∆ R R 

avR
R∆∆∆∆====

53
4 ππππββββ
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In fact the nucleus is not solid, but behaves like an elastic fluid, and the radius stretches at 
higher energy (faster rotations).  Thus the Moment of Inertia increases, and the E of the 
rotational state decreases below the value predicted by the simple formula. 

 
 

 
  


