
Lecture notes for 640-343 ELECTRODYNAMICS.

1 Summary of Electrostatics

1.1 Coulomb’s Law

Force between two point charges

~F12 =
1

4πε0

Q1Q2r̂12

| ~r1 − ~r2 |2
(1.1.1)

1.2 Electric Field

~E(r) =
~F (~r)

Q1

(1.2.1)

For a charge distribution:

~E(r) =
1

4πε0

∫
volume

ρ(~r′)R̂

R2
dv (1.2.2)

~R = ~r − ~r′ (1.2.3)

1.3 Electric Potential

The scalear or Electric Potenetial V is defined by:

~E(~r) = −∇(V ) (1.3.1)

Where V = Electric Potential. For a static electric field.

∇× ~E = 0 ⇒
∮
line

~E · ~dl = 0 (1.3.2)

∇ · ~E =
ρ

ε0
⇒

∮
surface

~E · ~ds =
Qenc

ε0
(1.3.3)

In a static field, conductors are equipotentials.
Electric fields are perpendicular to equipotentials.
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Electric potential due to a dipole:

V (~r) =
~P · r̂

4πε0r2
, ~P = Q~d (1.3.4)

1.4 Dielectrics

An external electric field induces a Polarization density field ~P in a class of materials called
Dielectrics.
This in turn induces a bound surface charge density:

ρps = ~P · r̂ (1.4.1)

on the surfaces of the dielectric. It also produces a bound volume charge density:

ρp = −∇ · ~P (1.4.2)

The electric flux density or electric displacement ~D is defined:

~D = ε0 ~E + ~P (1.4.3)

⇒ ∇ · ~D = ρfree (1.4.4)

Independent of dielectric materials.
For simple dielectrics:

~D = ε0εr ~E = ε ~E (1.4.5)

εr = relative permittivity; ε = absolute permittivity.
The Dielectric Strength is the maximum electric field that does not cause an insulator to
break down.

1.5 Boundaries between Dielectrics

At the boundary between dielectrics, tangetial componets of the electric field are equal.

E1t = E2t (1.5.1)

D1t

ε
=
D2t

ε
(1.5.2)

The normal components of the ~D field are given by:

D1n −D2n = ρs (1.5.3)

where ρs = free surface charge density.
The capacitance of a system of conductors is defined to be:

Q = CV (1.5.4)
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1.6 Laplace’s Equation

Poissson’s Equation: ∇2V = −ρ
ε

Laplace’s Equation: ∇2V = 0 where there are no free charges.
Uniqueness Theorem:
Any solution of Laplace’s equation that satisfies the boundary conditions is the unique
solution for the specified situation..

1.7 Method of Images

Involves placing ficticious image charges outside the system of interest in such a way to
minic the boundary conditions of the problem. The uniqueness theorem tells us that if the
boundary conditions can be satisfied by a combination of image charges then the solution
found is the only correction.

1.8 General Solution of Laplaces Equation

Use the method of seperation of variables.

V (x, y, z) = X(x)Y (y)Z(z)

V (r, θ, φ) = R(r)Θ(θ)Φ(φ)

In cartesian coords the solutions are sums of exponentials:

X(x) =
∞∑
i=1

Aie
kix +Bie

−kix (1.8.1)

In spherical coords the solutions are the sums of Legendre Polynomials.

R(R) =
∞∑
n=1

Rn(r) =
∞∑
n=1

(Anr
n +Bnr

−(n+1))

Θ(θ) =
∞∑
n=1

Θn(θ) =
∞∑
n=1

CnPn(cosθ)

1.9 Numerical Methods

Use finite difference equations. Calculate V(x,y) on a discrete grid of points (xi,yj).
get itteration equation:

V N+1
ij =

1

2(1 + d)
(V N

i+1,j + V N+1
i−1,j + d(V N

i,j+1 + V N+1
i,j−1 )) (1.9.1)

d = (
∆x

∆y
)2 (1.9.2)
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2 Magnetic Fields

2.1 Definitions

Magnetic force arises between 2 charges that move relative to one another.

~Fm =
µ0

4π

qq1

r2
~v × (~v1 ×

~r

| ~r |
), By Definition :

µ0

4π
= 10−7 (2.1.1)

Then ~Fm = q~v × ~B (2.1.2)

Where ~B = Magnetic Flux density caused by q1 moving with velocity ~v.

~B =
µ0

4π

q1

r2
~v1 ×

~r

| ~r |
(2.1.3)

The Lorentz force on a particle is

~F = ~Fe + ~Fm = q( ~E + ~v × ~B) (2.1.4)

2.2 Current density

The magnetic flux density ~B of a steady state current I in a curent conductor is given by
the Biot-Savart law:

~B(~r) =
µ0I

4π

∫
line of current

~dl × (~r − ~r′)
| ~r − ~r′ |3

(2.2.1)

The current density ~J is the current flow per unit area. The direction of ~J is the direction

normal to the element of area ∆ ~A.

lim
∆A→0

~J(~r) =
∆I(~r)

∆A
∆Â (2.2.2)

( ~J direction parallel to local current direction).

The total current flowing through an arbitary surface S is:

I =
∫
S

~J · ~ds (2.2.3)

2.3 Ampere’s Law

The condition for conservation of charge is:

~∇ · ~J = −∂ρ
∂t

(2.3.1)
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For steady currents:
~∇ · ~J = 0 (2.3.2)

General Biot-Savart Law is:

~B(~r) =
µ0

4π

∫
V ′

~J(~r′)× (~r − ~r′)
| ~r − ~r′ |3

dV ′ (2.3.3)

Found : ~∇× ~B = µ0
~J (2.3.4)

⇒
∮
~B · ~dl = µ0I (2.3.5)

These are Ampere’s Circuital Law.
The mgnetic forace on a current in a awire is:

~F = I
∫
C

~dl × ~B (2.3.6)

Where C= contour of the wire.

2.4 Vector Potential

Since there are no magnetic monopoles:

~∇ · ~B = 0 (2.4.1)

⇒ Exists a field, the magnetic vector potential ~A, such that:

~B = ~∇× ~A (2.4.2)

and ~A =
µ0

4π

∫
V ′

~J(~r)

| ~r − ~r′ |
dV ′ (2.4.3)

The vector Potential due to a magnetic dipole is:

~A =
µ0 ~m× r̂

4πr2
(2.4.4)

Where ~m = area × current is the dipole loop. Direction is the direction of area. ~m =
magnetic dipole moment.

⇒ ~B =
µ0 | m |
4πR3

(r̂2 cos(θ) + θ̂ sin(θ)) (2.4.5)

For steady currents ~∇ · ~A = 0 for steady currents.
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2.5 Magnetic properties of materials

Define:

~M = lim
∆v→0

∑n∆v
k=1 ~mk

∆v
(2.5.1)

as the local magnetisation density. This ~M induces bound volume and surface current den-
sities:

~Jm = ~∇× ~M (2.5.2)

is the bound volume current density,

~Jms = ~M × ŝ (2.5.3)

is the bound surface current density. ŝ is the normal to the surface.
Define ~H = Magnetic field intensity as:

~H =
~B

µ0

− ~M (2.5.4)

Then ~∇× ~H = ~Jfree where ~Jfree is the free current density.

In linear magnetic materials, ~M = χm ~H where χm = magnetic susceptibility.
Then

~B = µ0(1 + χm) ~H = µ0µr ~H = µ ~H (2.5.5)

where µr = 1 + χm =
µ

µ0

= relative permeability of a medium. µ = Absolute permeability

of this medium.
At the interface of 2 magnetic media B1n = B2n (normal component of ~B is continuous)

and H1t = H2t (tangential component of ~H is continuous).

A material is Diamagnetic if µr ≤ 1, Paramagnetic if µ ≥ and Ferromagnetic if µr � 1.

Ferromagnetic materials are highly non linear and ~B depends on the history of the material
as well as ~H . This is called hysterises.

3 Time varying fields - revison

3.1 Electromagnetic Induction

Magnetic F lux : Φ =
∫
S

~B · ~ds =
∮
C

~A · ~dl (3.1.1)

The Inductance of a circuit is defined as L =
NΦ

I
where N = number of turns.
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Faradays Law : V = −dΦ

dt
(3.1.2)

where V = emf induced in every loop of a circuit enclosing the magnetic flux Φ.
This is generalized to:

~∇× ~E = −∂
~B

∂t
(3.1.3)

This is generalized Faradays Law.

Magnetic Energy density Wm =
1

2
~H · ~B =

B2

2µ
=

1

2
µH2 Joules/m3 (3.1.4)

Electric Energy density WE =
1

2
~D · ~E =

1

2
εE2 =

1

2ε
B2 Joules/m3 (3.1.5)

Conservation of charge in a changing magnetic field leads to the generalization of Ampere’s
circuital law. This becomes:

~∇× ~H = ~J +
∂ ~D

∂t
(3.1.6)

3.2 Maxwell’s equations

We now have all of Maxwell’s equations.

Differential Integral

~∇× ~E = −∂
~B

∂t

∮
~E · ~dl = −∂Φ

∂t
Faradays Law (3.2.1)

~∇× ~H = ~J +
∂ ~D

∂t

∮
C
~H · ~dl = I +

∫
S

∂ ~D

∂t
· ~ds Ampere′s Circuital Law (3.2.2)

~∇ · ~D = ρ
∮
S
~D · ~ds = Q Gauss′ Law (3.2.3)

~∇ · ~B = 0
∮
~B · ~ds = 0 No Magnetic Monopoles (3.2.4)

3.3 Electromagnetic Waves

Combine these equations in a source free region to get the wave equations for ~E and ~B .

∇2 ~E − µε∂
2 ~E

∂t2
= 0 (3.3.1)

∇2 ~B − µε∂
2 ~B

∂t2
= 0 (3.3.2)
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Get an E/M wave that propagates at velocity v =
1
√
µε

= c in free space.

The plane wave solutions are:

~E = ~E0 cos(ωt− ~k · ~r), ~B = ~B0 cos(ωt− ~k · ~r) (3.3.3)

Direction of ~k is the direction of propagation of the wave. | k |= 2π

λ
where λ = wavelength

of the wave, ω =
2π × frequency

2π
. Phase velocity | v |= ω

| k |
.

In an E/M wave ~E ⊥ ~B. The poynting Vector:

P = ~E × ~H (3.3.4)

is the power density of the wave. The direction of P is the direction of wave propagation.
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