The Furthest Galaxies

Michele Trenti The University of Melbourne <u>mtrenti@unimelb.edu.au</u>

HUBBLE SPACE TELESCOPE XDF • EXTREME DEEP FIELD

Australian Government Australian Research Council

Taylor Lakes College

June 6th 2016

The night sky (naked eye)

2

Yuri Beletsky (ESO)

Galaxies appear

What is a galaxy?

*Andromeda, our closest neighbor

What is a galaxy: spirals

5

Galaxy MI01, NASA/ESA

What is a galaxy: spirals

★ Spiral galaxies have disk/(pancake)-like shape

6

Galaxy NGC4710, NASA/ESA

What is a galaxy: ellipticals

Galaxy NGC1132 NASA/ESA

Irregular/interacting galaxies

The Mice • Interacting Galaxies NGC 4676 Hubble Space Telescope • Advanced Camera for Surveys

NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team and ESA • STScI-PRC02-11d

The need for space telescopes

- ★ Earth Atmosphere:
 - ★ absorbs light
 - ★ blurs the images
- ★ Space Telescopes give sharper images

The need for space telescopes

- ★ Earth Atmosphere:
 - ★ absorbs light
 - **★**blurs the images
- ★ Space Telescopes give sharper images

NOF Digitized Sky Survey (ground-based image) for comparison

Size of Hubble eXtreme Deep Field on the Sky

★ 23 days exposure time with Hubble!

What we can learn?

12

NASA/ESA, XDF team

★ How many galaxies in the Universe?

★ How far?

★ How old?

★ Are properties evolving with time?

How many galaxies?

13

NASA/ESA, XDF team

★ This image contains ~5500 galaxies

★ Area is one part in 13 million of the full sky

★ 5,500×13,000,000 ~
70 billion galaxies in the Universe

How far and how old?

- ★ Information compressed in 2D
- ★ But galaxies are at different distances
- ★ Distance and age intertwined
 - ★ Light travels at finite speed

NASA/ESA, XDF team

★ Distant galaxies seen when Universe was young!

Finite speed of light: an analogy

★ Photons (light) transport information, much like a letter in the mail

★ It takes time for information to reach us★ When we receive it, we get a snapshot of the

15

past

The slowness of light

★ Photons (light) travel at ~300,000 km/s

★ Almost instantaneous on Earth

★ Tens of nanoseconds to cross this room

★ ~50 milliseconds (0.05s) to London

The slowness of light

★ Photons (light) travel at ~300,000 km/s

★ Significant in the solar system

 \star 1s to the Moon

★~8 minutes to the Sun

★~5 hours to Pluto

The slowness of light

★ Photons (light) travel at ~300,000 km/s

 \star Very slow in the context of galaxies

★ Nearest star [Proxima Cen]: ~4 years

★ Nearest large galaxy [Andromeda]: ~2.5 million years

The furthest galaxies live in the young Universe

Galaxy colors and distance

20

★ Galaxies have intrinsic colors

★ Depend on stellar ages and dust

Young stars: Blue

Old/dusty: Red

Galaxy colors and distance

★ Galaxies have intrinsic colors

* Depend on stellar ages and dust

★ In addition: **observed** colors depend on distance

5 billion light years

12 billion light years

Red-shifting of light

★Universe is expanding

★Distant galaxies move away from us as Universe expands

★ Doppler-shift of the photons emitted

★The more distant, the redder

XDF: a typical "nearby" spiral

★ This magnificent spiral is "only" 6 billion light years from us

XDF: a typical distant galaxy

★ The light of this tiny dot has traveled for about 12.5 billion years before reaching us

★ There are about 50 galaxies in this image at similar (or higher) distance from us

The distance frontier

25

NASA, ESA, G. Illingworth (University of California, Santa Cruz), R. Bouwens (University of California, Santa Cruz, and Leiden University), and the HUDF09 Team STScI-PRC11-05

Looking back in time

26

NASA/ESA, XDF team

Galaxy density versus lookback time

Galaxy formation rate versus time

Age of the Universe [billion years]

Why study galaxies across time

★Cosmic origin theme:

★Where are we coming from?

Recent progress/open questions

Hubble telescope sees galaxies over 95% of the Universe

30

★ Galaxy formation golden age: 10-12 billion years ago

★ How early can galaxies form?

★ Are the properties of the first generations of stars different?

Going where no one has gone before

- ★400-500 million years after the Big Bang is Hubble's Detection Frontier
 - ★ More distant galaxies are too red to be seen by Hubble
 - ★ We need the next generation facility:
 - ★ James Webb Space Telescope (2018)

Going where no one has gone before

★James Webb Space Telescope (2018):

- better sensitivity (6.5m mirror), higher resolution and infrared sensitivity
- It will see the first generation of galaxies, just 300 million years after the Big Bang

Hubble

James Webb

image simulation by M. Stiavelli, STScI

Resources: Hubble images

Outreach images: <u>hubblesite.org</u>

FOS

33

Science images: <u>hla.stsci.edu</u>

