Common errors and tips for coding in C

Part 2 Computational Physics

April 21, 2016

THE UNIVERSITY OF

MELBOURNE




1 General good practice

The main issues when it comes to good coding practice are:

1. Semi-colons:

A very common bug that arises for new C programmers is missing semi-
colons. Always add these as you code, don’t ever leave these with the thought
of coming back and adding them later. As soon as you finish a line of code
add the semi colon. You don’t finish a paragraph and then dot your i’s, do
it as you go!

2. Closing brackets:

Similar to above always add a closing bracket every time you open one. A
much harder bug to find is a miss match in the number of braces and which
closing brace corresponds to which opening one. Your main, functions, loops
and if statements should all have opening and closing curly braces before
they have any contents!

3. Formatting and indenting :

Although it might seem picky, make sure you properly format your code as
you go. It is not OK to do it all later. It might seem tedious initially, but you
have to maintain a good practice. This isn’t just so it looks nice, this is vital
for quick and easy reading of the code, which is important when debugging.

The main thing is to properly indent. This may seem trivial, but as your
code gets more complicated, and it will, it will get extremely messy and hard
to debug.

Anything inside a function or the main should be indented by a couple of
spaces or a tab. Anything inside a loop or if statement indented again. If
you have an if-statement inside a double for-loop inside a function, you
should have the first for loop indented once, the second once again (twice
from the left edge), the if statement once again(three times from the left
edge) and the contents of the if statements a final time (four times from
the left edge). This means that at a glance we can see what bit of code be-
longs to which if-statement/loop/function and much easier debugging when
checking for mismatched curly braces.

Check any of the example codes (available in the course notes) as a guide to
proper indenting.



2

Non-exhaustive list of common mistakes

In no particular order, the following are some easily overlooked areas you should
start to look out for when coding:

1.

Not including the main:

The main is always needed otherwise the code won’t run. When the C
program executes, it executes the contents of main line by line. If no main
is included, nothing will happen!

. Putting code outside of the main and other functions:

Any code outside of the main or any functions will not be run (or cause a
crash). The main will contain all the code that is run, and any calls to any
functions. The only code outside of the main should be variables that exist
across the whole program and functions.

. Not initializing variables:

A common cause of a program not running as it should is when variables
aren’t properly initialized (assigned a starting value). Variables can be cre-
ated without assigning a value, but this should only be done when you are
sure that it will be assigned a variable before you use it in any arithmetic or
in function arguments.

Providing the wrong scope for variables:

Scope refers to where variables ‘live’. If a variable is created inside a loop,
it will only ‘exist’ inside that specific loop and sub-loops. Trying to access
it from outside the loop will either cause the code to not compile, or will
call a different variable of the same name, if it exists. The same applies to
functions and the main; a variable created inside the main is only accessible
inside the main, a variable created inside a function is only accessible inside
that function.

Not double-checking arguments and returning variables:

The only way to access a variable in a different scope is to pass it as an
argument to a function or for a function to return it in a function call.
When a variable is passed as a function argument, a copy of that variable is
created and exists while that function runs, and is deleted when the function
finishes. When a variable is returned, a copy is made and the copy is passed
to where the function is called.



6. Too many global variables:

A global variable is a variable that is created outside of the main or is created
using the #define keyword (both usually done at the start of the program,
right after the #include statements). These exist anywhere in the current
program. A common mistake is to define a lot of variables in this way. Global
variables should be reserved for cases where the logic requires it, or in most
cases, for constants whose value is always the same e.g.: gravity, pi ...

7. Not prototyping functions:

When you have a small amount of functions, where they don’t call each other,
it is OK to define the functions above the main. If you put the functions
below the main, or one of the functions calls another, the best practice is
to prototype. This means that you put all the functions below the main,
and you put the function definitions (basically the first line of the function
definition but with the * {’ replaced with a ‘;’) before the main.

8. Using the wrong operators:

Y

(a) ‘=" vs ‘=="":
= is used for assignment.
x=3 means that from now on, x will evaluate to 3.
x==3 checks for equality; if x is 3 then it will return True otherwise it
will return False.
e.g.: if (x==3){x=4} will set x to be equal to 4 if x is 3.

(b) Using “!:
To check if two variables/numbers are not equal, or to convert between
a False and a True we use the ‘!’ (the ‘not’ keyword does not exist

in C). For example x!=3 will return True if x is not equal to 3, !True
will return False.

(¢) Inequalities:
Remember that as well as ‘<’ and ‘>’ we can check if something is greater
or equal to, or less than or equal to, with : ‘>=" and ‘<=’

9. Not taking advantage of functions:

The main reason we use functions is code reuse. If we want some piece of
code to be able to run more than once we should put it in a function. This
means that if we ever wish to make a change to the logic, we only have to
change it once, not every time we use it.

This is also very useful when we wish to run the same piece of code, with the
same logic, with some parameters changed. This is where arguments come

4



10.

11.

12.

13.

in. By understanding this and properly implementing it, the use of functions
becomes invaluable.

Storing function return types incorrectly:

A function’s return type is how a function passes information back to the
point where the function was called. A function of type double will return a
double, using this we can think of the function as performing an operation.
You give it some input arguments, it processes them, and it returns the
output. For example for a function that computes y=mx+c, you pass it m,
x and ¢ and it will spit back y (the logic that the function performs is the
same regardless of the input arguments, the output is not).

If we call a function that returns a variable and do not assign it to a variable,
the contents of the code will run, but the return value will not be stored in
memory. In the case where we want the value (which would be almost all
cases where a function returns a value) we must assign it using the = operator.
For example double y = straightLine(m,x,c); will assign the output to
our new variable y, based on the given input variables.

Not properly incrementing For loops:

The counter in a for loop is incremented after the code within the loop is
executed, it is the last thing that happens before the next loop.

for(i=0; i<10; i++) : The first section in the brackets sets the counter’s
value, the second is a check done at the start of every loop run, the last is
the increment that happens AFTER the code in the ‘{ }’ has run.

Functions of type void:

The void key word is used to specify that a function doesn’t return any
variable. This is used in cases where the function is just a piece of code we
wish to run, and there is no useful variable output. For example a function
that plots the position vector given x and y positions of the form void
plotPosition(x,y); will give no output as a variable, but will still run,
in this case plotting a graph (assuming the correct contents of the function
definition).

Dealing with doubles and integers:

Numbers including a decimal point evaluate as floating point numbers, those
without evaluate as integers.

Be careful when dealing with arithmetic that involves variables of different
types. 1.0/2 will evaluate to 0.5. 1/2 will evaluate to 0. This is because
1.0 is a double, so dividing by 2 works fine. 1, on the other hand is an int,



14.

15.

16.

so dividing by 2 gives 0 because integers simply drop any numbers past the
decimal point (making 0.5 become 0). Note there is no rounding. 3/4 will
evaluate to 0 (since 0.75 will become 0) not 1.

To be safe, add a .0 to any number if this could cause a possible issue in
arithmetic or if a particular function requires a float (or double), for example
in printf and in pgplot functions.

Casting:

Casting is when you convert a variable of one type to another. An easy way
to convert an int to a double is to multiply it by 1.0. Assigning an int to
a double or a double to an int should take care of this automatically. You
can also do this explicitly by prefacing a number with the type to cast to
in brackets e.g. (double) 3 or (int) 5.4 although you shouldn’t need to
worry about this in these labs.

The difference between creating and accessing arrays, and array
index:

An array is created using the square brackets to specify its size. From this
point on, the square brackets are used to access a particular element of the
array. An array is created like so:

double myArray[3].

Now calling double myArray[2] will pick out the last element, in this case
returning a double.

Array indices run from 0 to the array size. The array created by double
myArray [3] has 3 elements, the first being accessed by myArray[0] and the
3rd by myArray[2].

Another example: double myMatrix[2] [2] will create a 2-by-2 matrix.
Now calling double myMatrix[2] [2] will try to return the element (a dou-
ble) in the 3rd row and 3rd column. In this case it doesn’t exist so the
program will crash. If passing the matrix to a function for example, you
would pass myMatrix as the argument, as this refers to the double array
itself, not myMatrix [2] [2] which refers to a particular element.

Array assignment and equality operations:

You cannot simply assign an array to another. We must make a new empty
array and loop over the array, individually assigning each element to the
corresponding element in the new array.

The same is true for checking equality. To check if two matrices are equal
we must loop over every element and check that every element is equal.



17.

18.

19.

20.

21.

Dealing with arrays and functions:

Arrays are not variables in the same sense as the ones we are used to. They
are pointers to the memory address where the array is stored. Because of
this we cannot simply pass them to a function as an argument to make a
copy, and we cannot simply return an array.

When an array is passed to a function, the memory address is passed. This
means that any changes are made to the array that we input, meaning that
any changes will remain even after the function has run. If we pass an array
to a function, and double all the elements, the next time the array is accessed
(even outside of the function), all the elements will be doubled. So, while
we cannot return an array, we don’t actually need to as any changes can
be retrieved. Be aware of this and careful when dealing with arrays and
functions.

Not closing a file:

A common mistake is not closing a file before the end of the program, this
will cause issues when writing to a file. Another common issue is using the
same FILE variable twice and not closing it between uses. Always close a file
as soon as you are done with a particular task, e.g.: open a file to write to
it, as soon as everything is written, close the file.

Not having the right data type in printf statements:

Always check your printf statements. If you are printing a double or float,
use %f, if printing an int use %d, if printing a char use %s. Not being
consistent is a common cause of issues.

Also make sure that you have the right number of arguments in a printf.
If the number of % in the string doesn’t match the number of variable argu-
ments, compiling will fail.

Issues with scanf:

The most common issue with scanf is forgetting to add a & before the
variables you are writing to. This format is because scanf is writing to the
memory address of the variables directly, not calling assignment operator
(remember that &x refers to the memory address of x, not the variable that
it holds). If you have issues when using scanf to read a double, use %1f
instead of %f as scanf is more discriminating when it comes to variable

types.

Difference between ’ and ":



When using a char, you assign using ” for example char s = ’1’. When
using a string you assign using "" for example const char * s = "lalala".
Mixing these up will cause compilation issues.

Acknowledgements

Originally written by Anton Hawthorne, April 2016.



	General good practice
	Non-exhaustive list of common mistakes

