
Flowchart guidelines

Part 2 Computational Physics

May 2, 2016

1



Introduction

Here we give some tips and a brief description of what is expected in your flowcharts.

Your flowcharts should contain all the relevant information that explains the
logic of your code.

You do NOT need to list the libraries you include with the #include state-
ments, or THAT you define a main or other functions. You DO need to show
how these functions operate and how/when you call them. You need to show
the logical flow of the program. The nitty-gritty of how your code functions is the
most important thing. If your program just does one thing, then your flow chart
is simple.

Linear flowcharts

For example the flowchart for the ”Hello World” flowchart can be as simple as:

Start

Print “Hello World” to the terminal.

End

As the logic just follows a sequence of events, the flowchart is linear. Even if
we were to have a more complicated list of operations, the flowchart will be linear
in all cases except when conditionals (if-statements), recursion, or loops are used.

2



Branching flow charts

If there are any loops or if-statements anywhere in your code, your flowchart
MUST branch; it cannot be a linear sequence of operations.

For example, reading a number from the keyboard, and printing an output
depending on whether or not the number is bigger than 10:

Start

Print “Enter an integer” to the terminal.

Read an integer from the keyboard and assign to integer x

is x>10?

Print “small”. Print “BIG”.

End

False True

For small programs it is best to include every step. As soon as your programs
become more involved, you can gloss over steps that don’t help to understand how
the function/program operates. For example in the above, the second operation,
printing a prompt to the user, is not necessary information and can be merged
with the third, whereas all the other steps are necessary.

3



Representing loops

A common mistake people make is when their code includes for loops but their
flowchart doesn’t show this. Here is an example of nested for-loops; a double
for-loop that prints ‘a’ twenty times:

Start

Initialize i and j to 0.

is i<10 ?

is j<2 ?

Print ‘a’ to the terminalIncrement j

Increment i, set j to 0.

End

True

True

False

False

4



Common errors

Please do not write your C code in the flow chart. The idea is to explain the pro-
gram logic using English. Using symbols as shorthand is fine, but do not simply
copy your code into the flow chart. ‘int i=0’ is fine (although ideally you would
explicitly state that you are initializing i to 0) but this is as much C code as is
acceptable. You should NEVER have ‘for(i=0;i<10;i++)’ in your flowchart.
You need to go through the logic in words.

A common mistake is to reference variables before they are ever defined. If you
use a variable then you have to create it first. For example checking if i <10 would
have no meaning if i hasn’t been assigned a value before that point in the flowchart.

Other common errors include using the wrong box type. A very common ex-
ample of this is using a diamond box when no decision is being made (or not using
one when a decision is being made).

You must also show all the relevant variable assignments. A common mistake
is to update a variable in the code but not show this in the flow-chart. For exam-
ple, in the Fibonacci sequence, not explicitly showing that you reassign the three
values as you move along the sequence.

You can and should modulate your flowcharts, meaning reference a flowchart
within a flowchart. If you call a function more than once, or it is messy to include
in the main flow of your flowchart, you should draw the flowchart for that function
separately. You can then reference this function (in a square/processing box) from
other flowcharts.

5


