QUANTUM COMPUTING: New beads on the abacus
By David N. Jamieson, PhD, FAIP

- Micronanalytical Research Centre, School of Physics, University of Melbourne
- National Nanofabrication Laboratory, School of Physics, University of New South Wales
- Laser Physics Centre, Department of Physics, University of Queensland

Classical Physics / Quantum Physics

Classical Physics
- Everyday experience
- Big objects we can look at
- Everything is smooth, continuous and sharp
- The scale of humans

Quantum Physics
- Only in the last 100 years
- Objects as small as molecules, atoms and below
- Everything is indivisibly packaged
- Things are blurry, move in jumps

Classical computing: Moore’s Law

The remarkable development of computers

- Gordon Moore:
 - in 1965 was Director of Fairchild Semiconductor
 - made a 32 transistor integrated circuit one year
 - 64 the next
- “The number of transistors (and hence computer power) doubles every 18 months to two years”
- (now making one transistor per ant per year - 10^{17} ants on Earth)

Motorola Power PC 620 Chip
7 million transistors
(ancient relic)

The end of Moore’s law

Prospects for the future

- Cannot get indefinite speed increases by indefinite miniaturisation
- Can get some advantages from parallel processors (more than one computer chip working together)
- BUT: Some problems will always be difficult for classical computers
- One class of these problems involves the factoring of large numbers into prime factors
Factorizing Large Numbers

- Essential for security of transactions over the internet ("RSA security"), etc.
- Example:
 - $127 \times 129 = 16297$ Easy! A few minutes
 - 7×29083 Hard! Maybe an hour
- "hardness" of factorizing large numbers is the key to internet security
- Best supercomputers today can manage a 140 digit number
- What about a 500 digit number? - Forget it!

REMEMBER: Fundamentally, we do not live in a classical world!

The Quantum Computer

- What can a quantum computer do?
 - Quantum computers do the factorization problem 10^8 times faster than conventional computers
 - Searching through long lists
 - Quantum encryption for secure information exchange
 - Solving chemical and biological structures
 - Modelling the real (quantum) world
 - How is this done?

The Classical World

Use quantum particles as the bits in a quantum computer!

- Conventional computer memory states:
 - A classical computer memory can only occupy one state at a time

- Quantum computer memory states:
 - A quantum computer memory can occupy all possible states at the one time
 - The solution to the problem appears in the final state of the computer when the state of the qubits are read out
 - What can we use as qubits?

- What can we use as qubits?
 - Binary bits
 - Binary qubits

Essential Quantum Mechanics

We need to get a feel for these non-classical attributes:

- The art of being in two places at the one time
- Occupying two states simultaneously
- Entanglement
- "Spooky action at a distance"*

* A. Einstein
Blocking one hole gives the classical result.
"Wavefunction collapse"

First Result
- Can probe for holes in a screen with a large number of classical particles (one particle for each point on the barrier)
- Can probe for holes in a barrier with one quantum particle
- The "wave function" collapses to a particle when measured
- Quantum objects can do many things at once
- But there is more: Entanglement
Entanglement

Alice

Bob

Forward

Backwards

Entangled particles

(Spooky action at a distance)
Second Result

- Quantum objects can exist in two superimposed (entangled) states
- This superimposed state can collapse into a definite state upon measurement
- Entangled particles can be created that retain the superimposed state until measurement
- But how do we use this for quantum computing?
- We can use spin...

Spin

Sub-atomic particles spin. Look at the proton:
- A spinning charged particle acts like a tiny loop of electric current
- This produces a magnetic field
- So the spinning particle is like a tiny bar magnet

Spin and Magnetism

Spinning charged particles can be lined up with an external magnetic field

Alignment force vectors

Spin and Magnetism

Spinning charged particles can be lined up with an external magnetic field

Alignment force vectors

Spin and Magnetism

Spinning charged particles can be lined up with an external magnetic field

Alignment force vectors

Spin and Magnetism

Space Quantisation
- Like many other properties, space itself is quantised
- The spinning particles cannot have arbitrary orientations in space relative to the external magnetic field
- The allowed orientations depend on the amount of spin
- For protons and electrons, there are only two allowed orientations
- (This is a spin-half particle)
Spin and Magnetism

Spinning subatomic particles are quantum particles
- The spin orientation are two different quantum states
- Before measurement, the spin orientation can be in two (spin 1/2) directions at the same time - superimposed states
- Upon measurement, the spin is found to point in a definite direction - wavefunction collapse
- Just what we need for a quantum computer!
- To program this computer, we need energy

Magnetic Resonance

Orientation and energy
- The spin down state is not at equilibrium
- The magnetic field twists the spin vector into alignment
- (Precise alignment is prevented by space quantisation)

Change orientations
- The high energy state will spontaneously relax back to the low energy state, releasing energy
- The low energy state can absorb energy and flip to the high energy state

A radio frequency quantum of radiation does this for protons in typical magnetic fields is 42.58 MHz/Tesla
• Excited mercury vapour emits light owing to electrons jumping up and down between energy levels
• A magnetic field placed around the vapour splits the energy levels and causes small changes in the colour of the light
• These changes can be detected with a sensitive spectrometer
• Can also see the effect in sunspots...

Magnetic Resonance

Assign qubits

Spin up: \(|\uparrow\rangle\)
Spin down: \(|\downarrow\rangle\)

Classical equivalents

\(|\uparrow\rangle\) and \(|\downarrow\rangle\) (No classical equivalent! 1 and 0 simultaneously?)

The Kane Quantum Computer

We are now ready to commence construction:

• "A Silicon-based nuclear spin quantum computer" by B. E. Kane, *Nature*, May 14, 1998
• Proposes a device that:
 - encodes qubits as the orientation of spinning nuclei
 - provides entanglement by means of electron clouds
 - is constructed in silicon like conventional computers
• Will use a block of pure ^{28}Si (spin-zero nucleus)
• Will use atoms of phosphorous (^{31}P) to carry the spins

The Kane Quantum Computer

Close-up of a phosphorous atom (not to scale)
Apply radio frequency pulse

Apply radio frequency pulse

Apply radio frequency pulse

Apply radio frequency pulse

exchange coupling" mediated by J-Gates entangles spins

J-Gates entangles spins

$\approx 200 \text{ Å}$
Fabrication Pathways

Who is going to make this?
We are:
- Semiconductor National Nanofabrication (SNF) Laboratory, School of Physics, University of New South Wales
- Microanalytical Research Centre, School of Physics, University of Melbourne
- Laser Physics Centre, Department of Physics, University of Queensland
- Los Alamos National Laboratories, U.S.A.

Fabrication strategies:
- (1) Nano-scale lithography:
- (2) Direct 31P ion implantation

(1) Nano-scale Lithography

Step 1: Clean, flat silicon surface
Step 2: Deposit single 31P atoms
Step 3: Overgrowth by more silicon
Step 4: Deposit oxide layer
Step 5: Deposit metal contacts

20 nm

Sub-300Å AuPd gates on GaAs

(1) Nano-scale Lithography

• Electron beam lithography at the University of New South Wales

25K - 1500K Variable T
3-Chamber UHV
Plus: Si-MBE, RHEED, LEED, Auger

1nm

Image of individual atoms on silicon surface

(1) Nano-scale Lithography

• Scanning Tunneling Microscope with silicon crystal growth capabilities at the UNSW

(2) Alternative Fabrication Pathway

Difficulties:
- Must place 31P to a precision of a few billionths of a metre
- Having done that, need to come back and add metal electrodes on the buried 31P atoms for the gates
- The 31P must not move about while doing this

An alternative strategy:
- Direct 31P ion implantation
- Can create templates for electrodes automatically

(2) Direct 31P ion implantation

• Single MeV heavy ions are used to produce latent damage in plastic
• Etching in NaOH develops this damage to produce pits
• Light ions produce smaller pits

1. Irradiate
2. Latent damage
3. Etch

Ion tracks in space

- Cosmic rays struck this Apollo 8 helmet made from CR-39 plastic
- Etching in NaOH revealed the tracks

(2) Direct 31P ion implantation

- Mask 31P implant
- Etch latent damage & metallise
- Read-out state of "qubits"

Key Technologies; Imaging a single interstitial P atom

Is the human brain a quantum computer?

- Roger Penrose thinks so!

Conclusion: Quantum Computer

- Superposition and entanglement enables massive parallel processing
- Binary qubits
- (L qubits can store 2^L numbers at once, classical only 1)
- Shor’s prime factorization algorithm (1994) relevant to cryptography
- Grover’s exhaustive search algorithm (1996)

Quantum Computers

All Problems

Not the next step, a whole new journey*

*Prof Gerard Milburn, University of Queensland, one of our collaborators on the quantum computer project.
Further Reading

- Australian Centre for Quantum Computer Technology
- Oxford quantum computer group http://www.qubit.org
- Quantum Technology G. Milburn, Allen & Unwin, 1996
- The Large, the Small and the Human Mind, R. Penrose, Cambridge, 1997
- Quantum Teleportation, A. Zeilinger, Scientific American, April 2000
- Physics and the Information Revolution, J. Bimbaum, R.S. Williams, Physics Today, January 2000