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ABSTRACT

The gravitational-wave signal generated by global, nonaxisymmetric shear flows in a neutron star is calculated
numerically by integrating the incompressible Navier-Stokes equation in a spherical, differentially rotating shell.
At Reynolds numbers Re� 3#103 the laminar Stokes flow is unstable, and helical, oscillating Taylor-Go¨rtler
vortices develop. The gravitational-wave strain generated by the resulting kinetic energy fluctuations is computed
in both plus and cross polarizations as a function of time. It is found that the signal-to-noise ratio for a coherent,
108 s integration with LIGO II scales as 6.5[Q* /(104 rad s�1)]7/2 for a star at 1 kpc with angular velocityQ* . This
should be regarded as a lower limit: it excludes pressure fluctuations, herringbone flows, Stuart vortices, and
fully developed turbulence (for Re� 106).

Subject headings: gravitational waves — hydrodynamics — stars: neutron — stars: rotation

1. INTRODUCTION

Gravitational radiation fromlinear, global, fluid oscillations
in neutron stars has been studied extensively: for example,
radiation-reaction–drivenr-modes (Andersson 1998; Levin &
Ushomirsky 2001) and two-stream superfluid oscillations with
entrainment (Andersson 2003; Prix et al. 2004). However, grav-
itational radiation is also emitted bynonlinear, global, fluid
oscillations. Specifically, it is well known that a viscous Navier-
Stokes fluid inside a spherical, differentially rotating shell—
spherical Couette flow (SCF)—undergoes sudden transitions
between states with different vortex topologies, which are
generally nonaxisymmetric, due to shear instabilities (Marcus
& Tuckerman 1987a, 1987b; Junk & Egbers 2000). Recent
simulations of superfluid SCF, based on the Hall-Vinen-
Bekarevich-Khalatnikov (HVBK) theory of a1S0 neutron super-
fluid, confirm that such transitions to nonaxisymmetric flows
also occur in neutron stars (Peralta et al. 2005, 2006).

In this Letter, we compute the gravitational-wave signal gen-
erated by nonaxisymmetric flows in young, rapidly rotating
neutron stars. There are at least two astrophysical scenarios in
which these develop. First, if the crust and core of the star are
loosely coupled, as indicated by observations of pulsar glitches
(Shemar & Lyne 1996; Lyne et al. 2000), differential rotation
builds up as the crust spins down electromagnetically, until the
core undergoes a transition to the Taylor-Go¨rtler vortex state,
a helical, oscillating flow that is one of the last stages in the
laminar-turbulent transition in SCF as the Reynolds number
increases (Nakabayashi 1983; Nakabayashi & Tsuchida 1988).
Second, if the crust precesses while the core does not, the
rotation axes of the crust and core misalign, inducing a rich
variety of flow patterns and instabilities, such as time-depen-
dent shear waves, leading to fully developed turbulence (Wilde
& Vanyo 1995). We treat the former scenario here and postpone
the latter to a separate paper.

In § 2, an SCF model of a differentially rotating neutron
star is proposed. In § 3, we explore the transitional dynamics
and topology of the flow. In § 4, we calculate the gravitational-
wave signal and its frequency spectrum.
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2. GLOBAL SCF MODEL AND NUMERICAL METHOD

We consider an idealized, two-component model of a neutron
star, in which a solid crust is loosely coupled to a differentially
rotating fluid core. Specifically, we consider the motion of a
neutron fluid within a spherical, differentially rotating shell in
the outer core of the star, where the densityr lies in the range
0.6! r/rc ! 1.5,rc p 2.6#1014 g cm�3 (Sedrakian & Sedrak-
ian 1995). The inner (radiusR1) and outer (radiusR2) bound-
aries rotate at angular frequenciesQ1 andQ2, respectively, about
the z-axis. As the star is strongly stratified, the shell is thin,
with R2 � R1 ≤ 0.1R1 (Abney & Epstein 1996; Levin &
D’Angelo 2004). The rotational shear is sustained by the vac-
uum dipole spin-down torque, violent events at birth (Dim-
melmeier et al. 2002; Ott et al. 2004), accretion in a binary
(Fujimoto 1993), neutron star mergers (Shibata & Uryu¯ 2000),
or internal oscillations such asr-modes (Rezzolla et al. 2000;
Levin & Ushomirsky 2001).

We describe the fluid by the isothermal Navier-Stokes equa-
tion, which, in the inertial frame of an external observer, takes
the form

�v �p 2� (v · �)v p � � n∇ v � �F (1)
�t r

in the incompressible limit� · p 0, where is the fluidv v
velocity, n is the kinematic viscosity,r is the density,p is the
pressure, andF is the Newtonian gravitational potential. Hence-
forth, F is absorbed intop by replacingp � rF with p, such
that pressure balances gravity in the stationary equilibrium
( p 0) and there are no gravitational forces driving the flowv
in the incompressible limit when the stationary equilibrium is
perturbed. The Reynolds number and dimensionless gap width
are defined by Rep Q1 /n and d p (R2 � R1)/R1; the rota-2R1

tional shear isDQ p Q2 � Q1. Equation (1) is solved subject
to no-slip boundary conditions.

Superfluidity plays a central role in the thermal (Yakovlev
et al. 1999) and hydrodynamic (Alpar 1978; Reisenegger 1993;
Peralta et al. 2005) behavior of neutron star interiors. However,
we assume a viscous fluid here. Counterintuitively, this is a
good approximation because Re (∼1011) is very high (Mastrano
& Melatos 2005). It is known from terrestrial experiments on
superfluid4He that, at high Re, quantized vortices tend to lock
the superfluid to turbulent eddies in the normal fluid by mutual
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friction (Barenghi et al. 1997), so that the superfluid resembles
classical Navier-Stokes turbulence. Moreover, in HVBK sim-
ulations of SCF, it is observed that the global circulation pattern
of the superfluid does not differ much from a Navier-Stokes
fluid at Re� 250 (Henderson & Barenghi 2004; Peralta et al.
2005). Finally, a viscous interior is expected in newly born
neutron stars, which are hotter than the superfluidity transition
temperature (Andersson et al. 1999).

By assuming a viscous fluid, we omit from equation (1) the
coupling between quantized vortices and the normal fluid (Hall
& Vinen 1956), entrainment of superfluid neutrons by protons
(Comer 2002), and pinning of quantized vortices in the inner
crust, at radiusR1 (Baym et al. 1992; cf. Jones 1998). We also
neglect vortex pinning in the outer core for simplicity, even
though evidence exists that it may be important when magnetic
fields are included. Specifically, three-fluid models of postglitch
relaxation based on the core dynamics favor vortex pinning at
the phase separation boundary of the core (Sedrakian & Sed-
rakian 1995), for example, due to the interaction between vortex
clusters and the Meissner supercurrent set up by the crustal
magnetic field at the phase boundary (Sedrakian & Cordes
1999). Other models analyze interpinning of proton and neutron
vortices in the core (Ruderman 1991) and its effect on pre-
cession (Link 2003). In the context of the hydrodynamic model
in this Letter, pinning effectively increases the viscosity of the
core, reducing Re.

We use a pseudospectral collocation method to solve equa-
tion (1) (Bagchi & Balachandar 2002; Giacobello 2005). The
equations are spatially discretized in spherical polar coordinates
(r, v, f), using restricted Fourier expansions inv andf and a
Chebyshev expansion inr. The solution is advanced using a
two-step fractional step method, which is accurate to second
order in the time step (Canuto et al. 1988). We limit ourselves
to narrow gapsd ≤ 0.1, which are computationally less expen-
sive and for which more experimental studies are available for
comparison (Yavorskaya et al. 1977; Nakabayashi 1983). Re-
cently, we performed the first stable simulations of superfluid
SCF using this method (Peralta et al. 2005).

3. NONAXISYMMETRIC SPHERICAL COUETTE FLOW

The bifurcations and instabilities leading to transitions be-
tween SCF states are controlled by three parameters:d, Re, and
DQ. In addition, the history of the flow influences its post-
instability evolution and the final transition to turbulence (Wulf
et al. 1999; Junk & Egbers 2000). For example, in experiments
on Taylor-Görtler vortices (TGVs), the final state depends on
dQ1/dt, that is, on the time to reach the critical Re relative to
the viscous diffusion time (Nakabayashi & Tsuchida 1995). In
general, four SCF states can be distinguished: (1) a laminar
basic flow, (2) a toroidal or helical Taylor-Go¨rtler flow, (3) a
transitional flow with nonaxisymmetric, oscillating TGVs, and
(4) fully developed turbulence (Yavorskaya et al. 1975; Naka-
bayashi 1983). In a neutron star, where Re∼ 1011, the state is
probably turbulent. However, we are restricted by our com-
putational resources to simulate regimes 1 and 2, with 1#103

≤ Re≤ 3#104.

3.1. TGV Transition: Initial Conditions

Experimentally, ford p 0.06, TGVs are obtained by quasi-
statically increasingQ1 from zero to give Re∼ 3300 (Naka-
bayashi & Tsuchida 2005). This procedure can be painfully
slow, because a steady state must be reached at each inter-
mediate step. Numerically, we circumvent it by following Li

(2004) and introducing a nonaxisymmetric perturbation with
azimuthal wavenumberma of the form

4e (r � R )(r � R )1 1 2v p � cosx(v, f), (2)r 2 2d R1

e p(r � R )(r � R )1 1 2v p sin sinx(v, f) (3)v [ ]2d 2(R � R )2 1

with x p p[1 � R2( p � v)/(R2 � R1) � 0.4 sinmaf]. This is1
2

done as follows: Before introducing the perturbation, a steady
state for Rep 2667 is obtained ( just below the critical Re
where TGVs emerge experimentally). Then the Reynolds num-
ber is raised instantaneously to Rep 3300, and we continue
by adding equations (2) and (3), with amplitudee1 ∼ 10�6Q1R1,
to the numerical solution at each time step until a viscous
diffusion time td p (R2 � R1)

2/n elapses. We then stop adding
the perturbation and the flow is left to evolve according to
equation (1) until a final steady state is reached. More than one
perturbation can lead to the same final state; some authors add
Gaussian noise (Zikanov 1996), although this affords less con-
trol over the wavenumber and the number of vortices excited.

The perturbation excites TGVs by shedding vorticity from
the inner sphere (Li 2004). Perturbations with 2≤ ma ≤ 5 are
explored, supplementing experiments withma p 3 (Nakaba-
yashi 1983). For numerical simplicity, we limit ourselves to
the case where only the inner sphere rotates. TGVs with both
spheres rotating are equally possible and have been observed
experimentally; they exhibit additional twisting (and increased
nonaxisymmetry) in the helical vortices (Nakabayashi & Tsu-
chida 2005), so the gravitational-wave strain we compute in
§ 4 is a lower limit.

3.2. Flow Topology

Figure 1a shows a kinetic energy density isosurface (0.11#
r ) for the fully developed TGV statema p 3, d p 0.06,5 2R Q1 1

Rep 3300. Its nonaxisymmetry is apparent in the striated
equatorial bands, whose inclination with respect to the equator
varies with longitude from zero to∼3� (Nakabayashi 1983).

A popular way to classify complex, three-dimensional flows
is to construct scalar invariants fromAij p � /�xj (Chong etvi

al. 1990; Jeong & Hussain 1995). Specifically, the discriminant
DA p � 27 /4, with RA p �det (Aij) and QA p ( �3 2 2Q R AA A ii

Aij Aji)/2, distinguishes between regions that are focal (DA 1 0)
and those that are strain-dominated (DA ! 0). Figure 1b plots
theDA p 10�3 isosurface in color: yellow regions are stable6Q1

focus/stretching,4 and blue regions are unstable focus/contract-
ing. The filaments coincide with the TGVs. One circumferential
vortex andma p 3 helical vortices lie in each hemisphere. We
also plot the isosurfaceDA p �10�3 : red and green regions6Q1

have stable-node/saddle/saddle and unstable-node/saddle/
saddle topologies, respectively (Chong et al. 1990). The helical
vortices span∼40� of latitude and travel in thef-direction,
with phase speed≈0.48Q1R1.

The TGV state is oscillatory, which is important for the
gravitational-wave spectrum. Its periodicity is evident in Fig-
ure 1c, where at an equatorial point is plotted versus timevv

for 2 ≤ ma ≤ 5. For ma p 3, oscillates with period 4.4 ,�1v Q1v

the time for successive helical vortices to pass by a stationary

4 Trajectories are repelled away from a fixed point along a real eigenvector
of Aij (stretch) and describe an inward spiral when projected onto the plane
normal to the eigenvector (stable focus).
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Fig. 1.—Taylor-Görtler vortices forma p 3 andd p 0.06, att p 100 .�1Q1

(a) Isosurface of kinetic energy:rF F2 p 0.11r . (b) Isosurfaces of velocity5 2v R Q1 1

gradient discriminant:DA p 10�3 , stable-focus/stretching (yellow) and6Q1

unstable-focus/contracting (blue); DA p �10�3 , stable-node/saddle/saddle6Q1

(red) and unstable-node/saddle/saddle (green). (c) Time history of atr pvv

1.06,v p p/2, andf p 0 for ma p 2 (red), 3 (blue), 4 (green), and 5 (black).
(d) Streamlines obtained by integrating the in-plane components of in thev
planesf p 0 (left), f p p/2 (middle), andf p 2p/9 (right).

Fig. 2.—Gravitational waves from Taylor-Go¨rtler vortices in a neutron star
with Q1/2p p 600 Hz andr p 1 kpc. (a) Signal h�,#(t) and (b) frequency
spectrumh�,#( f ), for ma p 2 (red), 3 (blue), 4 (green), and 5 (black). Solid
and dashed curves correspond to the plus and cross polarizations, respectively,
as measured by an observer on thex-axis.

observer, in accord with experiments (Nakabayashi 1983). In-
stantaneous streamlines are drawn in three meridional planes
in Figure 1d, highlighting the nonaxisymmetry. One obtains a
similar TGV state ford p 0.14 andd p 0.18 (Sha & Naka-
bayashi 2001; Li 2004).

4. GRAVITATIONAL-WAVE SIGNAL

The metric perturbation p (4G/rc4) d3x Tij in the trans-TTh ∫ij

verse-traceless gauge can be calculated using Einstein’s quad-
rupole formula

2 22Gr � FxFTT 3 2h p d x FvF x x � d (4)ij � i j ij( )6 2rc �t 3

(Misner et al. 1973), where the integral is over the source
volume,r is the distance to the source, andTij p rg2 � pdijv vi j

is the stress-energy of a Newtonian fluid. Note that we ap-
proximateT00 p rg2 ≈ r(1� F F2/c2) in equation (4), and wev
omit a thermal energy contribution proportional todp (∼rF F2,v
by Bernoulli’s theorem), which we cannot calculate with our
incompressible solver. Far from the source, we writepTThij

h� � h# , with the polarizations defined by p � p� # � �e e e eij ij yy zz

p p 1 for an observer on thex-axis.# #e eyz zy

In Figure 2a, we plot theh� and h# polarizations versus
time, as seen by an observer on thex-axis, for 2≤ ma ≤ 5 (the
signal is∼3 times weaker on thez-axis, where the north-south
asymmetry is not seen in projection). The amplitude is greatest
for ma p 5 but depends weakly onma. Importantly, h� and h#

are p/2 out of phase for all ma, and we find Fh�F K Fh#F for
even ma. These two signatures offer a promising target for
future observations. The period (≈0.8 ) is similar for 3≤�1Q1

ma ≤ 5, where a maximum of three helical vortices are excited
(Li 2004) (we find that the torque atR2 oscillates with the same

period). This too is good for detection, because several modes
are likely to be excited in a real star. The period arises because
the isosurface in Figure 1a forms a pattern with sixfold sym-
metry when projected onto they-z plane, with fundamental
period 4.4 .�1Q1

In Figure 2b, we present the frequency spectra of the plus
and cross polarizations. The two peaks, atf ≈ 1.2Q1 and f ≈
2.4Q1, have full widths at half-maximum of∼300 Hz. This is
caused by the subharmonics evident in Figure 1c, which arise
because the northern and southern helical vortices start at un-
equal and variable longitudes.In addition, the peaks for even
and odd ma are displaced by ∼500 Hz,and the primary peak
for ma p 4 is split. These two spectral signatures are a prom-
ising target for future observations. The even-odd displacement
may arise because the phase speeds of the vortex patterns for
ma p 2 andma p 3 differ by ≈0.01Q1R1 (Li 2004). For large
f, we find h�,#( f ) ∝ f �3/2.

The squared signal-to-noise ratio can be calculated from
(S/N)2 p 4 dfFh( f )F2/Sh( f ) (Creighton 2003), where we�∫0

take Sh( f ) p 10�50[ f /(0.6 kHz)]2 (0.2 kHz ≤ f ≤ 3 kHz) for
a 108 s integration with LIGO II, if the frequency and phase
of the signal are known in advance (Brady et al. 1998). For a
star with Q1/2p p 600 Hz, atr p 1 kpc we find S/Np 0.21
(ma p 2), 0.12 (ma p 3), 0.023 (ma p 4), and 0.22 (ma p 5),
although there will be some leakage of signal when the coherent
integration is performed, because the spectrum is not mono-
chromatic. Forma ≤ 5, S/N increases (decreases) asma odd
(even) increases. We also find S/N∝ , which implies that7/2Q1

the fastest millisecond pulsars (Q1/2p ∼ 1 kHz) and newly born
pulsars withDQ/Q1 ∼ 0.1 are most likely to be detected. The
flow states leading to turbulence at Re� 106, for example,
shear waves, Stuart vortices, and “herringbone” waves (Naka-
bayashi & Tsuchida 1988), make contributions of similar order
to the TGV signal in Figure 2.

The Reynolds number in the outer core of a neutron star,
Rep 1010[r/(1015 g cm�3)]�1[T/(108 K)] 2[Q* /(104 rad s�1)]
(Mastrano & Melatos 2005), whereT is the temperature, typ-
ically exceeds the maximum Re in our simulations (due to
computational capacity). For Re� 106, the flow is turbulent
and therefore axisymmetric when time-averaged—but not in-
stantaneously. In Kolmogorov turbulence, the characteristic
flow speed in an eddy of wavenumberk scales ask�1/3, the
turbulent kinetic energy scales ask�5/3, and the turnover time
scales ask�2/3. From equation (4), the rms wave strain scales
ask�3/2 dk k�1/3 after averaging over Gaussian fluctuations, and∫
it is dominated by the largest eddies (where most of the kinetic
energy also resides). We therefore conclude that, even for Re
� 106, the largest eddies, which resemble organized structures
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like TGVs, dominateh� andh#, not the isotropic small eddies,
but the signal is noisier. Hence, counterintuitively, we predict
that hotter neutron stars (with lower Re) have narrower grav-
itational-wave spectra than cooler neutron stars,ceteris paribus.

We ignore compressibility when computingT00 (dp p 0) and
solving equation (1) numerically by pressure projection. Yet,
realistically, neutron stars are strongly stratified (Abney & Ep-
stein 1996), confining the meridional flow in Figure 1d into
narrow layers nearr p R1 and r p R2. Stratification can be
implemented crudely by using a low-pass spectral filter to ar-
tificially suppress (Don 1994; Peralta et al. 2006). We post-vr

pone this to future work.

We acknowledge the computer time supplied by the Aus-
tralian Partnership for Advanced Computation (APAC) and the
Victorian Partnership for Advanced Computation (VPAC). We
thank Professor Li Yuan, from the Chinese Academy of Sci-
ences, for very helpful discussions. We also thank Professor
S. Balachandar, from the University of Illinois at Urbana-
Champaign, for supplying us with his original Navier-Stokes
pseudospectral solver, from which our spherical Couette solver
was developed.

REFERENCES

Abney, M., & Epstein, R. I. 1996, J. Fluid Mech., 312, 327
Alpar, M. A. 1978, J. Low Temp. Phys., 31, 803
Andersson, N. 1998, ApJ, 502, 708
———. 2003, Classical Quantum Gravity, 20, R105
Andersson, N., Kokkotas, K., & Schutz, B. F. 1999, ApJ, 510, 846
Bagchi, B., & Balachandar, S. 2002, J. Fluid. Mech., 466, 365
Barenghi, C. F., Samuels, D. C., Bauer, G. H., & Donnelly, R. J. 1997, Phys.

Fluids, 9, 2631
Baym, G., Epstein, R. I., & Link, B. 1992, Physica B, 178, 1
Brady, P. R., Creighton, T., Cutler, C., & Schutz, B. F. 1998, Phys. Rev. D,

57, 2101
Canuto, C., Hussaini, M., Quarteroni, A., & Zang, T. 1988, Spectral Methods

in Fluid Dynamics (Berlin: Springer)
Chong, M. S., Perry, A. E., & Cantwell, B. J. 1990, Phys. Fluids A, 2, 765
Comer, G. L. 2002, Found. Phys., 32, 1903
Creighton, T. 2003, Classical Quantum Gravity, 20, S853
Dimmelmeier, H., Font, J. A., & Mu¨ller, E. 2002, A&A, 393, 523
Don, W. S. 1994, J. Comput. Phys., 110, 103
Fujimoto, M. Y. 1993, ApJ, 419, 768
Giacobello, M. 2005, Ph.D. thesis, Univ. Melbourne
Hall, H. E., & Vinen, W. F. 1956, Proc. R. Soc. London A, 238, 204
Henderson, K. L., & Barenghi, C. F. 2004, Theor. Comput. Fluid Dyn., 18,

183
Jeong, J., & Hussain, F. 1995, J. Fluid Mech., 285, 69
Jones, P. B. 1998, MNRAS, 296, 217
Junk, M., & Egbers, C. 2000, in Lecture Notes in Physics, 549, Physics of

Rotating Fluids, ed. C. Egbers & G. Pfister (Berlin: Springer), 215
Levin, Y., & D’Angelo, C. 2004, ApJ, 613, 1157
Levin, Y., & Ushomirsky, G. 2001, MNRAS, 324, 917
Li, Y. 2004, Sci. China A, 47(S1), 81
Link, B. 2003, Phys. Rev. Lett., 91, 101101

Lyne, A. G., Shemar, S. L., & Smith, F. G. 2000, MNRAS, 315, 534
Marcus, P. S., & Tuckerman, L. S. 1987a, J. Fluid Mech., 185, 1
———. 1987b, J. Fluid Mech., 185, 31
Mastrano, A., & Melatos, A. 2005, MNRAS, 361, 927
Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, Gravitation (San Fran-

cisco: Freeman)
Nakabayashi, K. 1983, J. Fluid Mech., 132, 209
Nakabayashi, K., & Tsuchida, Y. 1988, J. Fluid Mech., 194, 101
———. 1995, J. Fluid Mech., 295, 43
———. 2005, Phys. Fluids, 17(10), No. 4110
Ott, C. D., Burrows, A., Livne, E., & Walder, R. 2004, ApJ, 600, 834
Peralta, C., Melatos, A., Giacobello, M., & Ooi, A. 2005, ApJ, 635, 1224
———. 2006, ApJ, submitted
Prix, R., Comer, G. L., & Andersson, N. 2004, MNRAS, 348, 625
Reisenegger, A. 1993, J. Low Temp. Phys., 92, 77
Rezzolla, L., Lamb, F. K., & Shapiro, S. L. 2000, ApJ, 531, L139
Ruderman, M. 1991, ApJ, 382, 587
Sedrakian, A., & Cordes, J. M. 1999, MNRAS, 307, 365
Sedrakian, A. D., & Sedrakian, D. M. 1995, ApJ, 447, 305
Sha, W., & Nakabayashi, K. 2001, J. Fluid Mech., 431, 323
Shemar, S. L., & Lyne, A. G. 1996, MNRAS, 282, 677
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