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ABSTRACT

Recent time-dependent, ideal magnetohydrodynamic (ideal-MHD) simulations of polar magnetic burial in
accreting neutron stars have demonstrated that stable, magnetically confined mountains form at the magnetic poles,
emitting gravitational waves at f� (stellar spin frequency) and 2f�. Global MHD oscillations of the mountain,
whether natural or stochastically driven, act to modulate the gravitational wave signal, creating broad sidebands
(FWHM�0:2f�) in the frequency spectrum around f� and 2f�. The oscillations can enhance the signal-to-noise ratio
achieved by a long-baseline interferometer with coherent matched filtering by up to 15%, depending on where f�
lies relative to the noise curve minimum. Coherent, multidetector searches for continuous waves from non-
axisymmetric pulsars should be tailored accordingly.

Subject headinggs: gravitation — gravitational waves — stars: magnetic fields — stars: neutron — stars: rotation

1. INTRODUCTION

Nonaxisymmetric mountains on accreting neutron stars with
millisecond spin periods are promising gravitational wave sources
for long-baseline interferometers like the Laser Interferometer
Gravitational Wave Observatory (LIGO). Such sources can be
detected by coherent matched filtering without a computation-
ally expensive hierarchical Fourier search (Brady et al. 1998),
as they emit continuously at periods and sky positions that
are known a priori from X-ray timing, at least in principle. Non-
axisymmetric mountains have been invoked to explain why
the spin frequencies f� of accreting millisecond pulsars, mea-
sured from X-ray pulses and/or thermonuclear burst oscil-
lations (Chakrabarty et al. 2003; Wijnands et al. 2003), have a
distribution that cuts off sharply above f� � 0:7 kHz. This is
well below the centrifugal breakup frequency for most nuclear
equations of state (Cook et al. 1994), suggesting that a gravi-
tational wave torque balances the accretion torque, provided
that the stellar ellipticity satisfies � � 10�8 (Bildsten 1998).
Already, the S2 science run on LIGO I has set upper limits on �
for 28 isolated radio pulsars, reaching as low as � � 4:5 ; 10�6

for J2124�3358, following a coherent, multidetector search
synchronized to radio timing ephemerides (LIGO Scientific Col-
laboration: Abbott et al. 2004a). Temperature gradients (Bildsten
1998; Ushomirsky et al. 2000), large toroidal magnetic fields in
the stellar interior (Cutler 2002), and polar magnetic burial, in
which accreted material accumulates in a polar mountain con-
fined by the compressed, equatorial magnetic field (Melatos &
Phinney 2001, 2005; Payne & Melatos 2004), have been in-
voked to account for ellipticities as large as � � 10�8. The latter
mechanism is the focus of this paper.

A magnetically confined mountain is not disrupted by ideal
magnetohydrodynamic (ideal-MHD) instabilities, like the Parker
instability, despite the stressed configuration of the magnetic
field (Payne & Melatos 2005). However, magnetospheric dis-
turbances (driven by accretion rate fluctuations) and magnetic
footpoint motions (driven by stellar tremors) induce the moun-
tain to oscillate around its equilibrium position (Melatos &
Payne 2005). In this paper, we calculate the Fourier spectrum of
the gravitational radiation emitted by the oscillatingmountain. In

x 2, we compute � as a function of time by simulating the global
oscillation of the mountain numerically with the ideal-MHD
code ZEUS-3D. In x 3, we calculate the gravitational wave spec-
trum as a function of wave polarization and accreted mass. The
signal-to-noise ratio (S/N) in the LIGO I and II interferometers is
predicted in x 4 as a function of Ma, for situations in which the
mountain does and does not oscillate, and for individual and
multiple sources.

2. MAGNETICALLY CONFINED MOUNTAIN

2.1. Grad-Shafranov Equilibria

During magnetic burial, material accreting onto a neutron
star accumulates in a column at the magnetic polar cap, until the
hydrostatic pressure at the base of the column overcomes the
magnetic tension and the column spreads equatorward, compress-
ing the frozen-in magnetic field into an equatorial magnetic belt
or ‘‘tutu’’ (Melatos & Phinney 2001; Payne & Melatos 2004).
Figure 1 illustrates the equilibrium achieved forMa ¼10�5 M�,
whereMa is the total accreted mass. AsMa increases, the equa-
torial magnetic belt is compressed further while maintaining its
overall shape.

In the steady state, the equations of ideal MHD reduce to the
force balance equation (cgs units)

:pþ �:�� (4�)�1(: <B) <B ¼ 0; ð1Þ

where B, �, p ¼ c2s �, and �(r) ¼ GM�r/R
2
� denote the magnetic

field, fluid density, pressure, and gravitational potential, re-
spectively, cs is the isothermal sound speed,M� is the mass of the
star, and R� is the stellar radius. In spherical polar coordinates
(r; �; �), for an axisymmetric fieldB ¼ : (r; �)/(r sin �) < ê�,
equation (1) reduces to the Grad-Shafranov equation

�2 ¼ F 0( ) exp ½�(�� �0)=c
2
s �; ð2Þ

where �2 is the spherical polar Grad-Shafranov operator, F( )
is an arbitrary function of the magnetic flux  , and we set
�0 ¼ �(R�). In this paper, as in Payne &Melatos (2004), we fix
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F( ) uniquely by connecting the initial and final states via the
integral form of the flux-freezing condition, viz.,

dM

d 
¼ 2�

Z
C

ds�

jBj ; ð3Þ

where C is any magnetic field line, and the mass-flux distribution
is chosen to be of the form dM /d / exp (�  / a), where  a is
the polar flux, tomimicmagnetospheric accretion (matter funneled
onto the pole). We also assume north-south symmetry and adopt
the boundary conditions ¼ dipole at r ¼ R� (line-tying),  ¼ 0
at � ¼ 0, and @ /@r ¼ 0 at large r. Equations (2) and (3) are solved
numerically using an iterative relaxation scheme and analytically
by Green functions, yielding equilibria like the one in Figure 1.

2.2. Global MHD Oscillations

The magnetic mountain is hydromagnetically stable, even
though the confining magnetic field is heavily distorted. Numer-
ical simulations using ZEUS-3D, a multipurpose, time-dependent,
ideal-MHD code for astrophysical fluid dynamics, which uses
staggered-mesh finite differencing and operator splitting in three
dimensions (Stone & Norman 1992), show that the equilibria
from x 2.1 are not disrupted by growing Parker or interchange
modes over a wide range of accreted mass (10�7 M�PMaP
10�3 M�) and intervals as long as 104 Alfvén crossing times
(Payne & Melatos 2005).

The numerical experiments leading to this conclusion are
performed by loading the output (� andB) of the Grad-Shafranov
code described in Payne &Melatos (2004) into ZEUS-3D, with
the time step determined by the Courant condition satisfied by
the fast magnetosonic mode. The code was verified (Payne &
Melatos 2005) by reproducing the classical Parker instability
of a plane-parallel magnetic field (Mouschovias 1974) and the
analytic profile of a static, spherical, isothermal atmosphere.
Coordinates are rescaled in ZEUS-3D to handle the disparate
radial (c2s R

2
�/GM�) and latitudinal (R�) length scales. The sta-

bility is confirmed by plotting the kinetic, gravitational poten-
tial and magnetic energies as functions of time and observ-
ing that the total energy decreases back to its equilibrium value
monotonically; i.e., the Grad-Shafranov equilibria are ( local)
energy minima. Note that increasing � uniformly (e.g., fivefold)
does lead to a transient Parker instability (localized near the pole)
in which P1% of the magnetic flux in the tutu escapes through
the outer boundary, leaving the magnetic dipole and mass ellip-
ticity essentially unaffected.
Although the mountain is stable, it does wobble when per-

turbed as sound and Alfvén waves propagate through it (Payne
& Melatos 2005). Consequently, the ellipticity � of the star os-
cillates about its mean value �̄. The frequency of the oscillation
decreases with Ma, as described below. The mean value �̄ in-
creases with Ma up to a critical mass Mc and increases with
 a/ �, as described in x 3.1.
In ideal MHD, there is no dissipation and the oscillations

persist for a long time even if undriven, decaying on the Alfvén
radiation timescale (which is much longer than our longest sim-
ulation run). In reality, the oscillations are also damped by ohmic
dissipation, which is mimicked (imprecisely) by grid-related losses
in our work.
To investigate the oscillations quantitatively, we load slightly

perturbed versions of the Grad-Shafranov equilibria in x 2.1 into
ZEUS-3D and calculate � as a function of time t. Figure 2 shows
the results of these numerical experiments. Grad-Shafranov
equilibria are difficult to compute directly from equations (2) and
(3) for Mak 1:6Mc because the magnetic topology changes and
bubbles form, so instead we employ a bootstrapping algorithm in
ZEUS-3D (Payne & Melatos 2005), whereby mass is added
quasi-statically through the outer boundary and themagnetic field
at the outer boundary is freed to allow themountain to equilibrate.
The experiment is performed for r0 /R� ¼ c2s R�/GM� ¼ 2 ; 10�2

(to make it computationally tractable) and is then scaled up
to neutron star parameters (r0 /R� ¼ 5 ; 10�5) according to � /
(R�/r0)

2 and �A / R�/r0, where �A is the Alfvén crossing time
over the hydrostatic scale height r0 (Payne & Melatos 2005).

Fig. 1.—Equilibrium magnetic field lines (solid curves) and density con-
tours (dashed curves) for Ma ¼ 10�5 M� and  a ¼ 0:1 �. Altitude is marked
on the axes (log scale) (from Payne & Melatos 2004).

Fig. 2.—Normalized ellipticity �(t)/�̄ for Ma/Mc ¼ 0:16, 0.80, and 1.6, with
�̄ ¼ 8:0 ; 10�7; 1:2 ; 10�6; and 1:3 ; 10�6, respectively, for b ¼ 10. Time is
measured in units of the Alfvén crossing time, �A.
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The long-period wiggles in Figure 2 represent an Alfvén
mode with phase speed vA / M�1/2

a ; their period roughly triples
from 100�A for Ma/Mc ¼ 0:16 to 300�A for Ma/Mc ¼ 1:6. Su-
perposed is a shorter period sound mode, whose phase speed cs
is fixed for allMa. Its amplitude is smaller than the Alfvén mode;
it appears in all three curves in Figure 2 as a series of small kinks
for t P 50�A and is plainly seen at all t forMa/Mc ¼ 0:8. AsMa

increases, the amplitude of the Alfvén component at frequency
fA � 17(Ma/Mc)

�1/2 Hz is enhanced. By contrast, the sound
mode stays fixed at a frequency fS � 0:4 kHz, while its ampli-
tude peaks at Ma � Mc (Payne & Melatos 2005).

3. FREQUENCY SPECTRUM OF THE
GRAVITATIONAL RADIATION

In this section, we predict the frequency spectrum of the
gravitational-wave signal emitted by freely oscillating and sto-
chastically perturbed magnetic mountains in the standard or-
thogonal polarizations.

3.1. Polarization Amplitudes

The metric perturbation for a biaxial rotator can be written in
the transverse-traceless gauge as hTTij ¼ hþe

þ
ij þ h; e

;
ij , where e

þ
ij

and e ;
ij are the basis tensors for the + and ; polarizations and the

wave strains hþ and h ; are given by (Zimmermann & Szedenits
1979; Bonazzola & Gourgoulhon 1996)

hþ ¼ h0 sin �½ cos � sin i cos i cos (�t)

�sin �(1þ cos2i) cos (2�t)�; ð4Þ
h; ¼ h0 sin �½ cos � sin i sin (�t)

�2 sin � cos i sin (2�t)�; ð5Þ

with1

h0 ¼ 2GIzz��
2=dc4: ð6Þ

Here � ¼ 2�f� is the stellar angular velocity, i is the angle be-
tween the rotation axis ez and the line of sight, � is the angle
between ez and the magnetic axis of symmetry, and d is the
distance of the source from Earth.

The ellipticity is given by � ¼ jIzz � Iyyj/I0, where Iij denotes
the moment-of-inertia tensor and I0 ¼ 2

5
M�R

2
�. In general, � is a

function of t; it oscillates about a mean value �̄, as in Figure 2.
Interestingly, the oscillation frequency can approach � for cer-
tain values of Ma (see x 3.2), affecting the detectability of the
source and complicating the design of matched filters. The mean
ellipticity is given by

�̄ ¼
1:4 ; 10�6 Ma

10�2Mc

� �
B�

1012 G

� �2

MaTMc;

5Ma

2M�
1� 3

2b

� �
1þ Mab

2

8Mc

� ��1

MakMc;

8>>><
>>>:

ð7Þ

(Melatos & Payne 2005), where Mc ¼ GM�B
2
�R

2
�/(8c

4
s ) is the

critical mass beyond which the accreted matter bends the field
lines appreciably, b ¼  �/ a is the hemispheric to polar flux ratio,
and B� is the polar magnetic field strength prior to accretion. For
R� ¼ 106 cm, cs ¼ 108 cm s�1, and B� ¼ 1012 G, we findMc ¼
1:2 ; 10�4 M�. The maximum ellipticity, �̄! 20Mc/(M�b

2) �
10�5(b/10)�2 as Ma ! 1, greatly exceeds previous estimates,
for example, �̄ � 10�12 for an undistorted dipole (Katz 1989;

Bonazzola &Gourgoulhon 1996), due to the heightenedMaxwell
stress exerted by the compressed equatorial magnetic belt. Note
that �(t) is computed using ZEUS-3D for b ¼ 3 (to minimize
numerical errors) and scaled to larger b using equation (7).

3.2. Natural Oscillations

We begin by studying the undamped, undriven oscillations of
the magnetic mountain when it is ‘‘plucked,’’ for example, when
a perturbation is introduced via numerical errors when the
equilibrium is translated from the Grad-Shafranov grid to the
ZEUS-3D grid (Payne &Melatos 2005).We calculate h ; (t) and
hþ(t) for f� ¼ 0:6 kHz from equations (4) and (5) and display the
Fourier transforms h ; ( f ) and hþ( f ) in Figure 3 for two values
of Ma. The lower two panels provide an enlarged view of the
spectrum around the peaks; the amplitudes at f� and 2f� are
divided by 10 to help bring out the sidebands.

In the enlarged panels, we see that the principal carrier fre-
quencies f ¼ f�; 2f� are flanked by two lower frequency peaks
arising from the Alfvén mode of the oscillating mountain (the
rightmost of which is labeled ‘‘A’’). Also, there is a peak (labeled
‘S’) displaced by �f � 0:4 kHz from the principal carriers that
arises from the sound mode; it is clearly visible forMa/Mc ¼ 0:8
and present, albeit imperceptible without magnification, for
Ma/Mc ¼ 0:16. Moreover, � diminishes gradually over many �A
(e.g., in Fig. 2, for Ma/Mc ¼ 0:16, � drifts from 1:02�̄ to 0:99�̄
over 500�A), causing the peaks at f ¼ f�; 2f� to broaden. AsMa

increases, this broadening increases, the frequency of the Alfvén
component scales as fA / M�1/2

a and its amplitude increases
/ M 1/2

a (see x 2.2), and the frequency of the sound mode stays
fixed at fS � 0:4 kHz (Payne & Melatos 2005). Note that these
frequencies must be scaled to convert from the numerical model
(r0 /R� ¼ 2 ; 10�2) to a realistic star (r0 /R� ¼ 5 ; 10�5); it takes
proportionally longer for the signal to cross the mountain (Payne
& Melatos 2005).

3.3. Stochastically Driven Oscillations

Wenow study the response of themountain to amore complex
initial perturbation. In reality, oscillations may be excited sto-
chastically by incoming blobs of accreted matter (Wynn & King
1995) or starquakes that perturb the magnetic footpoints (Link
et al. 1998). To test this, we perturb the Grad-Shafranov equi-
librium  GS with a truncated series of spatial modes such that

 ¼  GSf1þ �n�n sin½m�(r � R�)=(rmax � R�)� sin(m�)g ð8Þ

at t ¼ 0, with mode amplitudes scaling according to a power law
�n ¼ 0:25 m�1, m ¼ 2nþ 1, 0 � n � 3, as one might expect for
a noisy process. We place the outer grid boundary at rmax ¼ R�þ
10r0. Figure 4 compares the resulting spectrum to that of the free
oscillations in x 3.2 for Ma/Mc ¼ 0:8. The stochastic oscillations
increase the overall signal strength at and away from the carrier
frequencies f� and 2f�. The emitted power also spreads farther in
frequency, with the FWHM of the principal carrier peaks mea-
suring�f � 0:25 kHz (cf.�f � 0:2 kHz in Fig. 3). However, the
overall shape of the spectrum remains unchanged. The Alfvén and
sound peaks are partially washed out by the stochastic noise but
remain perceptible upon magnification. The signal remains above
the LIGO II noise curves in Figure 4; in fact, its detectability can
(surprisingly) be enhanced, as we show below in x 4.

4. SIGNAL-TO-NOISE RATIO

In this section, we investigate how oscillations of the
mountain affect the S/N of such sources and how the S/N varies1 Our h0 is half that given by eq. (22) of Bonazzola & Gourgoulhon (1996).
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with Ma. In doing so, we generalize expressions for the S/N
and characteristic wave strain hc in the literature to apply
to nonaxisymmetric neutron stars oriented with arbitrary �
and i.

4.1. Individual versus Multiple Sources

The signal received at Earth from an individual source can be
written as h(t) ¼ Fþ(t)hþ(t)þ F ; (t)h ; (t), where Fþ and F ;

are detector beam-pattern functions (0 � jFþ; ; j � 1) that de-

pend on the sky position of the source as well as � and i (Thorne
1987). The squared S/N is then (Creighton 2003)2

S2=N2 ¼ 4

Z 1

0

df
jh( f )j2

Sh( f )
; ð9Þ

where Sh( f ) ¼ jh3/yr( f )j2 is the one-sided spectral density
sensitivity function of the detector (Figs. 3 and 4), corresponding

Fig. 3.—Top: Fourier transforms of the wave strain polarization amplitudes hþ( f ) (left) and h; ( f ) (right) for Ma /Mc ¼ 0:16 (dashed line) and 0.8 (solid line),
compared with the LIGO I and II noise curves h3=yr (see x 4) (dotted line). The signals for Ma/Mc ¼ 0:16 and 0.8 yield S/N ¼ 2:9 and 4.4, respectively, after 107 s.
Bottom: Zoomed-in view after reducing hþ; ; ( f�) and hþ; ; (2f�) artificially by 90% to bring out the sidebands. ‘‘S’’ and ‘‘A’’ label the signals induced by sound- and
Alfvén-wave wobbles, respectively. All curves are for � ¼ �/3, i ¼ �/3,  �/ a ¼ 10, and d ¼ 10 kpc.

2 This is twice the S/N defined in eq. (29) of Thorne (1987).
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to the weakest source detectable with 99% confidence in 107 s of
integration time, if the frequency and phase of the signal at the
detector are known in advance (Brady et al. 1998).

A characteristic amplitude hc and frequency fc can also be
defined in the context of periodic sources. For an individual
source, where we know �, i, Fþ and F ; in principle, the defi-
nitions take the form

fc ¼
Z 1

0

df
jh( f )j2

Sh( f )

" #�1 Z 1

0

df f
jh( f )j2

Sh( f )

" #
; ð10Þ

hc ¼ (S=N)½Sh( fc)�1=2: ð11Þ

These definitions are valid not only in the special case of an
individual source with � ¼ �/2 (emission at 2f� only) but also
more generally for arbitrary � (emission at f� and 2f�). Using
equations (4), (5), (10), and (11), and assuming for the mo-
ment that � is constant (i.e., the mountain does not oscillate),
we obtain

fc ¼ f�(	A1 þ 2A2)=(	A1 þ A2); ð12Þ

Fig. 4.—Top: Fourier transforms of the wave strain polarization amplitudes hþ( f ) (left) and h; ( f ) (right) for Ma /Mc ¼ 0:8 with stochastic (dashed line) and
natural (solid line), oscillations compared with the LIGO I and II noise curves h3/yr (see x 4) (dotted line) corresponding to 99% confidence after 107 s. Bottom:
Zoomed-in view with hþ; ; ( f�) and hþ; ; (2f�) artificially reduced by 90% to bring out the sidebands. ‘‘S’’ and ‘‘A’’ label the signal induced by sound- and Alfvén-
wave wobbles, respectively. All curves are for � ¼ �/3, i ¼ �/3,  �/ a ¼ 10, and d ¼ 10 kpc.
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S=N ¼ h0½Sh(2f�)��1=2
(	A1 þ A2)

1=2 sin � ð13Þ

with A1 ¼ cos2� sin2i(Fþ cos iþ F ; )
2, A2 ¼ sin2�½Fþ(1þ

cos2i)þ 2F ; cos i�2, 	 ¼ Sh(2f�)/Sh( f�), and 
 ¼ Sh( fc)/Sh( f�).
In the frequency range 0:2 kHz � f � 3 kHz, the LIGO II noise
curve is fitted well by h3/yr( f ) ¼ 10�26( f /0:6 kHz) Hz�1/2

(Brady et al. 1998), implying	 ¼ 4. As an example, for (�; i) ¼
(�/3; �/3), we obtain fc ¼ 1:67f�, hc ¼ 1:22h0, and S/N ¼
2:78( f�/0:6 kHz)(�/10�6)(d/10 kpc)�1. In the absence of spe-
cific knowledge of the source position, we take F ; ¼ Fþ ¼
1/

ffiffiffi
5

p
(for motivation, see below).

If the sky position and orientation of individual sources are
unknown, it is sometimes useful to calculate the orientation- and
polarization-averaged amplitude h̄c and frequency f̄c. To do this,
one cannot assume � ¼ �/2, as many authors do (Thorne 1987;
Bildsten 1998; Brady et al. 1998); sources in an ensemble gen-
erally emit at f� and 2f�. Instead, we replace jh( f )j2 by hjh( f )j2i
in equations (9), (10) and (11), defining the average as hQi ¼R 1

0

R
1
0
Qd(cos �) d(cos i). This definition is not biased toward

sources with small �; we prefer it to the average hQi2 ¼
��1

R 1

0

R �
0
Qd� d(cos i), introduced in equation (87) of Jaranowski

et al. (1998). Therefore, given an ensemble of neutron stars with
mountains that are not oscillating, we take hF2

þi ¼ hF2
; i ¼ 1/5

and hFþF ; i ¼ 0 (eq. [110] of Thorne 1987; cf. Bonazzola
& Gourgoulhon 1996; Jaranowski et al. 1998), average over �
and i to get hA1 sin

2�i ¼ 8=75 and hA2 sin
2�i ¼ 128/75, and

hence arrive at f̄c ¼ 1:80f�, h̄c ¼ 1:31h0, and hS2/N2i1/2 ¼
2:78( f�/0:6 kHz)(�/10�6)(d/10 kpc)�1. This ensemble-averaged
S/N is similar to the nonaveraged value for (�; i) ¼ (�/3; �/3), a
coincidence of the particular choice.

Our predicted S/N, averaged rigorously over� and i as above,
is (2/3)1/2 times smaller than it would be for � ¼ �/2, because
the (real) extra power at f� does not make up for the (artificial)
extra power that comes from assuming that all sources are max-
imal (� ¼ �/2) emitters. Our value of h̄c is 9/10 of the value of hc
quoted widely in the literature (Thorne 1987; Bildsten 1998;
Brady et al. 1998). The latter authors, among others, assume� ¼
�/2 and average over i, whereas we average over � and i to
account for signals at both f� and 2f�. They follow equation (55)
of Thorne (1987), which, in the context of bursting rather than
continuous-wave sources, multiplies hc by (2/3)1/2 to reflect a
statistical preference for sources with directions and polarizations
that give larger S/Ns (because they can be seen out to greater
distances), and they assume fc ¼ 2f� instead of fc ¼ 9f�/5 as re-
quired by equation (10).

4.2. Oscillations versus Static Mountain

We now compare a star with an oscillating mountain against a
starwhosemountain is in equilibrium.We compute equations (10)
and (11) directly from �(t) as generated by ZEUS-3D (see xx 2
and 3.1), i.e., without assuming that hþ( f ) and h ; ( f ) are pure
� functions at f ¼ f�; 2f�.

Table 1 lists the S/N and associated characteristic quan-
tities for three Ma values (and b ¼ 10) for both the static
and oscillating mountains. The case of a particular � and i
(� ¼ i ¼ �/3) is shown along with the average over � and i
(Thorne 1987; Bildsten 1998; Brady et al. 1998). We see that
the oscillations increase the S/N by up to �15%; the peaks at
f ¼ f�; 2f� are the same amplitude as for a static mountain,
but additional signal is contained in the sidebands. At least
one peak exceeds the LIGO II noise curve in Figure 3 in each
polarization.

4.3. Detectability versus Ma

The S/N increases with Ma, primarily because �̄ increases.
The effect of the oscillations is more complicated: although the
Alfvén sidebands increase in amplitude as Ma increases, their
frequency displacement from f ¼ f� and f ¼ 2f� decreases, as
discussed in x 3.2, so that the extra power is confined in a nar-
rower range of f. However, � and hence the S/N plateau when
Ma increases above Mc (see x 3.1). The net result is that in-
creasingMa by a factor of 10 raises the S/N by less than a factor
of 2. The S/N saturates at �3.5 when averaged over � and i
(multiple sources) but can reach �6 for a particular source
whose orientation is favorable. For our parameters, an accret-
ing neutron star typically becomes detectable with LIGO II
once it has accreted Mak0:1Mc. The base of the mountain
may be at a depth where the ions are crystallized, but an analysis
of the crystallization properties is beyond the scope of this
paper.

5. DISCUSSION

A magnetically confined mountain forms at the magnetic
poles of an accreting neutron star during the process of mag-
netic burial. The mountain, which is generally offset from the
spin axis, generates gravitational waves at f� and 2f�. Sidebands
in the gravitational-wave spectrum appear around f� and 2f�
due to global MHD oscillations of the mountain that may be
excited by stochastic variations in accretion rate (e.g., disk in-
stability) or magnetic footpoint motions (e.g., starquake). The
spectral peaks at f� and 2f� are broadened, with FWHMs
�f � 0:2 kHz. We find that the S/N increases as a result of
these oscillations by up to 15% due to additional signal from
around the peaks.
Our results suggest that sources such as SAX J1808.4�3658

may be detectable by next generation long-baseline interferome-
ters like LIGO II. Note that for a neutron star accreting matter
at the rate Ṁa � 10�11 M� yr�1 ( like SAX J1808.4�3658), it

TABLE 1

Signal-to-Noise Ratio

f�
(kHz) Ma/10

�4 M�

fc
(kHz) hc /10

�25 S/N

Static � ¼ �/3, i ¼ �/3

0.6......................... 0.16 1.003 0.83 2.22

0.6......................... 0.8 1.003 1.24 3.34

0.6......................... 1.6 1.003 1.35 3.61

Static h i�, h ii

0.6......................... 0.16 1.08 0.89 2.22

0.6......................... 0.8 1.08 1.33 3.34

0.6......................... 1.6 1.08 1.44 3.61

Oscillating � ¼ �/3, i ¼ �/3

0.6......................... 0.16 1.008 1.40 2.63

0.6......................... 0.8 1.003 2.15 4.02

0.6......................... 1.6 1.004 2.27 4.25

Oscillating h i�, h ii

0.6......................... 0.16 1.056 1.40 2.45

0.6......................... 0.8 1.048 2.14 3.74

0.6......................... 1.6 1.048 2.26 3.95
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takes only 107 yr to reach S/N > 3.3 The characteristic wave
strain hc � 4 ; 10�25 is also comparable to that invoked by
Bildsten (1998) to explain the observed range of f� in low-mass
X-ray binaries. An observationally testable scaling between hc
and the magnetic dipole moment j�j has been predicted (Melatos
& Payne 2005).

The analysis in xx 3 and 4 applies to a biaxial star whose
principal axis of inertia coincides with the magnetic axis of
symmetry and is therefore inclined with respect to the angular
momentum axis J in general (for � 6¼ 0). Such a star precesses
(Cutler & Jones 2001), a fact neglected in our analysis up to this
point in order to maintain consistency with Bonazzola &
Gourgoulhon (1996).

The latter authors explicitly disregarded precession, arguing that
most of the stellar interior is a fluid (crystalline crustP0:02M�) so
that the precession frequency is reduced by�105 relative to a rigid
star (Pines & Shaham 1974). Equations (4) and (5) display this
clearly. They are structurally identical to the equations in both
Bonazzola & Gourgoulhon (1996) and Zimmermann & Szedenits
(1979), but these papers solve different physical problems. In
Zimmermann & Szedenits (1979), � differs from the pulsar spin
frequency by the body-frame precession frequency, as expected
for a precessing, rigid, Newtonian star, whereas in Bonazzola &
Gourgoulhon (1996), � exactly equals the pulsar spin frequency,
as expected for a (magnetically) distorted (but nonprecessing)
fluid star. Moreover, � (which replaces �) in Zimmermann &
Szedenits (1979) is the angle between the angular momentum
vector J (fixed in inertial space) and the principal axis of inertia e3,
whereas � in Bonazzola & Gourgoulhon (1996) is the angle be-
tween the rotation axis� and axis of symmetry� of the (magnetic)
distortion. Both interpretations match on timescales that are short
compared to the free precession timescale �p � ( f��)

�1, but the
quadrupole moments computed in this paper (� � 10�7) and in-
voked by Bildsten (1998) to explain the spin frequencies of low-
mass X-ray binaries (10�8 � � � 10�7) predict �p of order hours
to days. The effect is therefore likely to be observable, unless inter-
nal damping proceeds rapidly. Best estimates (Jones & Andersson
2002) of the dissipation timescale give �3.2 yr (Q/104)(0.1 kHz/
f�) (I0 /10

44 g cm2) (1038 g cm2/Id), where Id is the piece of the
moment of inertia that ‘‘follows’’ e3 (not�), and 400PQP104 is
the quality factor of the internal damping (e.g., from electrons
scattering off superfluid vortices; Alpar & Sauls 1988).4

Some possible precession scenarios are summarized in Table 2.
If we attribute persistent X-ray pulsations to magnetic funneling
onto a polar hot spot, or to amagnetically anisotropic atmospheric
opacity, then the angle between � and�must be large, leading to
precession with a large wobble angle, which would presumably
be damped on short timescales unless it is driven (cf. Chandler
wobble). Such a pulsar emits gravitational waves at a frequency
near f� (offset by the body-frame precession frequency) and 2f�.
However, the relative orientations of �, �, and e3 are determined
when the crust of the newly born neutron star crystallizes after
birth and subsequently by accretion torques. This is discussed in

detail by Melatos (2000). If viscous dissipation in the fluid star
forces � to align with � before crystallization, and if the sym-
metry axis of the crust when it crystallizes is along �, then e3 (of
the crystalline crust plus the subsequently accreted mountain), �,
and � are all parallel and there is no precession (nor, indeed,
pulsation). But if the crust crystallizes before � has time to align
with �, then e3 and � are not necessarily aligned (depending on
the relative size of the crystalline and preaccretion magnetic de-
formation) and the star does precess. Moreover, this conclusion
does not change when a mountain is subsequently accreted along
�; the new e3 (nearly, but not exactly, parallel to �) is still mis-
aligned with � in general. Gravitational waves are emitted at f�
and 2f�. Of course, internal dissipation after crystallization (and,
indeed, during accretion) may force � to align with e3 (cf.
Earth).5,6 If this occurs, the precession stops and the gravitational
wave signal at f� disappears. The smaller signal at 2f� persists if
the star is triaxial (almost certainly true for any realistic magnetic
mountain, even though we do not calculate the triaxiality ex-
plicitly in this paper) but disappears if the star is biaxial (which is
unlikely). To compute the polarization waveforms with preces-
sion included, one can employ the small-wobble-angle expansion
for a nearly spherical star derived by Zimmermann (1980) and
extended to quadratic order by Van Den Broeck (2005). This
calculation lies outside the scope of this paper but constitutes
important future work.

Recent coherent, multi-interferometer searches for continuous
gravitational waves from nonaxisymmetric pulsars appear to
have focused on the signal at 2f� to the exclusion of the signal at
f�. Examples include the S1 science run of the LIGO and GEO
600 detectors, which was used to place an upper limit � � 2:9 ;
10�4 on the ellipticity of the radio millisecond pulsar J1939+
2134 (LIGO Scientific Collaboration: Abbott et al. 2004b), and
the S2 science run of the three LIGO I detectors (two 4 km arms
and one 2 km arm), which was used to place upper limits on � for
28 isolated pulsars with f� > 25 Hz (LIGO Scientific Collabo-
ration: Abbott et al. 2004a). Our results indicate that these (time-
and frequency-domain) search strategies must be revised to in-
clude the signal at f� (if the mountain is static) and even to collect

5 Accreting millisecond pulsars like SAX J1808.4�3658 do not show evi-
dence of precession in their pulse shapes, but it is not clear how stringent the
limits are (D. Galloway 2005, private communication).

6 We do not consider the magnetospheric accretion torque here (Lai 1999).

3 On the other hand, EOS 0748�676, whose accretion rate is estimated to be
at least 10 times greater, at Ṁak1010 M� yr�1, has f� ¼ 45 Hz (from burst
oscillations) and does not pulsate, perhaps because hydromagnetic spreading has
already proceeded further (�P5 ; 1027 G cm�3; Villarreal & Strohmayer 2004).

4 Precession has been detected in the isolated radio pulsar PSR B1828�11
(Stairs et al. 2000; Link & Epstein 2001). Ambiguous evidence also exists for
long-period (�days) precession in the Crab (Lyne et al. 1988), Vela (Desh-
pande & McCulloch 1996), and PSR B1642�03 (Shabanova et al. 2001). Of
greater relevance here, it may be that Her X-1 precesses (e.g., Shakura et al.
1998). This object is an accreting neutron star whose precession may be
continuously driven.

TABLE 2

Precession Scenarios and Associated Gravitational Wave Signals

Biaxial, e3 k � Triaxial, e3 k � e3R�

e3 k �

Zero GW............................. GW at 2f� GW near f� and 2f�
No precession...................... No precession Precession

No pulses ............................ No pulses Pulses

e3R�

Zero GW............................. GW at 2f� GW near f� and 2f�
No precession...................... No precession Precession

Pulses .................................. Pulses Pulses

Notes.—Here e3 is the principal axis of inertia, � is the axis of the magnetic
dipole,� is the spin axis, and f� is the spin frequency. Entries containing f� and/
or 2f� indicate gravitational wave emission at (or near, in the case of precession)
those frequencies; entries labeled ‘zero GW’ indicate no gravitational wave
emission.We also specify whether or not each scenario admits X-ray pulsations.
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signal within a bandwidth�f centered at f� and 2f� (if the moun-
tain oscillates). This remains true under several of the evolu-
tionary scenarios outlined above when precession is included,
depending on the (unknown) competitive balance between driv-
ing and damping.

The analysis in this paper disregards the fact that LIGO II will
be tunable. It is important to redo the S/N calculations with
realistic tunable noise curves to investigate whether the likeli-
hood of detection is maximized by observing near f� or 2f�. We
also do not consider several physical processes that affect

magnetic burial, such as sinking of accreted material, Ohmic
dissipation, or Hall currents; their importance is estimated
roughly by Melatos & Payne (2005). Finally, Doppler shifts due
to the Earth’s orbit and rotation (e.g., Bonazzola &Gourgoulhon
1996) are neglected, as are slow secular drifts in sensitivity
during a coherent integration.

This research was supported by an Australian Postgraduate
Award.
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