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ABSTRACT: We develop the many-pole dielectric theory of UV
plasmon interactions and electron energy losses, and couple our
advances with recent developments of Kohn−Sham density functional
theory to address observed discrepancies between high-precision
measurements and tabulated data for electron inelastic mean free
paths (IMFPs). Recent publications have demonstrated that a five
standard error difference exists between longstanding theoretical
calculations and measurements of electron IMFPs for elemental solids
at energies below 120 eV, a critical region for analysis of electron
energy loss spectroscopy (EELS), X-ray absorption spectroscopy
(XAS), and related technologies. Our implementation of improved
optical loss spectra and a physical treatment of second-order
excitation lifetimes resolves this problem in copper for the first time
for energies in excess of 80 eV and substantially improves agreement
for lower energy electrons.

■ INTRODUCTION
The relative electric permittivity, or complex dielectric function
ε, is one of the most fundamental and important parameters in
solid state physics and the principal quantifier of the response
of a solid material to an external electric field. Importantly, the
dielectric function is readily transformed into an energy loss
function, or ELF, that represents the probability of a material
absorbing energy ℏω and momentum ℏq from an energetic
incoming particle such as a photon or an electron. The ELF is
defined by
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where ε1(q, ω) and ε2(q, ω) are the real and imaginary parts of
the dielectric function, respectively. These parameters are also
directly obtained from the complex refractive index n + ik
following ε1 = n2 − k2 and ε2 = 2nk. In the optical limit,
corresponding to the case where q → 0, these parameters can
be obtained experimentally using optical reflection or trans-
mission measurements or less directly using techniques such as
reflection electron energy loss spectroscopy (REELS). Exten-
sive tabulations1 and compilations2 are widely cited by authors
looking to interpret a wide range of experimental data,
particularly in spectroscopy3−5 and imaging.6

Theoretical determinations of optical parameters are
available but are difficult to derive for low energies below a
few hundred electronvolts. Low energy electron inelastic mean
free paths (IMFPs) have been the concern of recent
publications because of their importance to the field of X-ray
absorption fine structure (XAFS),7,8 a spectroscopic tool used
for nanoscale structural determinations. XAFS has wide-ranging

applicability to elemental crystals,9 solutions,10 amorphous
materials, and catalytic active centers.11 However, analysis of
XAFS spectra is often limited, particularly in the information-
rich low-energy region, by a lack of accurate data concerning
the electron IMFP.12

Established theoretical approaches appear to overestimate
the IMFP for energies less than ∼100 eV.7,8,13 This situation
has led to a critical re-evaluation of the commonly used optical
data model, which represents energy loss spectra in terms of
lossless Lindhard or Drude−Lorentz functions. In the Lindhard
case this modeling is well constrained; however, the
representation of plasmon excitations as delta functions is
necessarily unphysical. Mermin type functions and correspond-
ing implementations of second-order (excitation) lifetimes not
only produce a more realistic model but also significantly
improve the agreement with experiment for copper.14

Many-pole dielectric models typically rely on experimental
optical ELFs,15−17 which usually provide no estimates of
uncertainties1,2 and in many cases show poor agreement with
one another.18 The latest theory utilizing such data14,19 remains
discrepant from experimental copper IMFP results from XAFS
by at least 5 standard errors at 120 eV.14 The disagreement is
worse for lower energies. We are therefore motivated to
investigate the applicability of density functional theory (DFT)
to low-energy optical loss data to improve our understanding of
this fundamental component of electron inelastic scattering
theory.
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■ THEORY
DFT is a computational technique developed by Hohenberg
and Kohn20 to determine electron eigenstates in a solid where
electron−electron and other interactions give rise to an
intractable number of terms in the Schrödinger equation. The
technique involves a number of approximations and simplifi-
cations,21 but with respect to solid-state physics is most
succinctly described in terms of the Kohn−Sham equation:22
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where the potential components correspond to the nuclear−
electron interactions (VNe), electron−electron interactions
(Vee), and exchange and correlation (Vxc). Interaction
potentials may be described in terms of functions of local
charge densities, rather than by consideration of individual
particles, enabling the problem to be treated with finite
resources. The computational package WIEN2k has been
developed to solve the Kohn−Sham equation via a recursive
self-consistent field algorithm.23 The basis eigenfunctions take
the form of radial functions multiplied by spherical harmonics
in regions close to atomic cores, while in interstitial regions
linearized augmented plane waves (LAPW) are used. The
exchange and correlation potential is determined following the
generalized gradient approximation described by Perdew et al.24

Calculation of Kohn−Sham eigenstates allows the user to
probe physical and chemical properties of periodic materials.
Ambrosch−Draxl and Sofo25 have demonstrated that WIEN2k
packages can be extended to calculate low-energy dielectric
functions and optical energy-loss data. The momentum matrix
elements are given by
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These amplitudes can be used in conjunction with the free-
electron gas theory of Lindhard to determine the response of a
solid to optical excitations. The Lindhard theory generalizes the

dielectric behavior of a homogeneous gas of electronic charge
in response to an external perturbation, and provides an
expression for the electric permittivity:26
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where f 0 is the Fermi distribution. The Lindhard model is
rigorous for a lossless free electron gas. In a solid, however,
excitations are limited by the complex band structure of the
material, which is characterized by the transition amplitudes
Mn′,n(k,q). Following Ambrosch−Draxl and Sofo,25 we write
the dielectric function in the optical limit as a modulation of the
Lindhard expression:
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The case n = n′ represents intraband optical transitions, while
n ≠ n′ gives the interband contribution. This formalism is
implemented into WIEN2k to compute the imaginary part of
the optical dielectric function, ε2(0,ω). The real part, ε1(0,ω), is
then determined by a Kramers−Kronig transformation,23,25

enabling determination of the optical ELF Im[−1/(ε(0,ω))].
Recently, Werner et al.18 published optical energy loss data

evaluated for a variety of elemental solids at energies up to 70
eV and transformed these into electron energy-loss data, from
which the authors were able to make calculations of low-energy
IMFPs. This promising study was based upon the classical
Drude approximation and, ergo, necessarily misrepresents the
momentum-dependence of the electron ELF. Here we
implement a more rigorous Lindhard partial pole model, and
then explicitly consider the impact of plasmon broadening on
the electron ELF and IMFP.14

Figure 1. Components used to construct the electron energy loss function. On the left is an externally determined optical loss function,1

corresponding to Im[−1/ (ε(0,ω))]. The right plot shows a one-component Lindhard ELF, while the bottom plot is a summation of Lindhard ELFs
that reproduce the original plot in the optical limit.
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To do this we must extend the optical ELF into the finite-q
region to describe the behavior of electrons depositing
significant momentum ℏq into the system. We initially present
a partial-pole model similar to the full Penn algorithm for IMFP
determination.27 This model was originally inspired by the early
work of Tung et al., who invoked the statistical approximation
to suggest a model of the dielectric response of a condensed
matter system comprising a summation of noninteracting
component oscillators.28 In the current model, discrete
plasmon resonances are represented as summations of partial
excitations using Lindhard functions.26

When applied to the optical ELF, the Lindhard dielectric
function produces a singularity at a defined frequency ωp
known as the plasma frequency, which is principally determined
by the charge density of the material:
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Applying this to a solid, we may consider the optical ELF to
be composed of Lindhard terms with closely spaced plasma
frequencies ωi such that
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We can define the amplitude parameters, Ai, so that the
optical ELF matches that determined via WIEN2k. Explicitly,
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With these amplitude parameters determined, we can build a
momentum-dependent ELF following the natural q-depend-
ence of the Lindhard expression:
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In practice this requires a particularly dense grid of ωi values
to ensure numerical precision. For this study we utilize a pole
spacing of approximately 0.03 eV in order to achieve acceptable
convergence in the ELF, while sampling of the spectrum is
carried out every 0.005 eV to ensure numerical stability. Figure
1 visualizes the procedure by which these components form the
total ELF. On the left, the ELF for copper is plotted in the
optical limit. The plot on the right shows a single-component
Lindhard ELF with a small amount of broadening added for
visibility. Summation of such Lindhard curves with appropriate
relative magnitudes and optical peak positions allows for the
construction of an ELF, as shown in the bottom plot, that is
correct in the optical limit and extended in a well-constrained
manner to the region of finite momentum transfer.
With the momentum-dependent ELF determined, we can

calculate the electron IMFP following the well-known relation-
ship15
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where the q± limits are given kinematically by
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The form of the q± limits coupled with the 1/q coefficient
conspire to exaggerate the impact of the very low-energy region
of the ELF on the electron IMFP. A consequence of this effect
is that any broadening mechanism introduced into the
Lindhard components will increase the low-energy losses and
thus cause a significant decrease in the IMFP at the energies of
interest in this work (but will have negligible effect at very high
energies due to the large range of integration). The
implementation of broadening is physically demanded due to
the finite lifetimes of the plasmon and single-electron
excitations represented by the resonance peaks in the ELF
and may be accomplished by generalizing the lossless Lindhard
dielectric function into the Mermin function given by29
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where γ is a broadening term induced by the excitation lifetime
τ = 1/γ. εM(q,ω) may be used in place of εL(q,ω) in eq 10;
however, the matching condition of eq 8 becomes uncon-
strained, with many sets of parameters Ai, ωi, and γi potentially
allowing for acceptable agreement with the optical spectrum. As
a result, we approximate the IMFP reduction due to plasmon
broadening following the results of a previous analysis14 that
utilized Mermin terms with independently determined
parameters for elemental copper.17

■ RESULTS
Figure 2 shows the optical ELF of copper calculated via
WIEN2k over 0−120 eV, along with commonly cited

experimental results from Hagemann et al.,1 and more recent
experimental data from Werner et al.18 Werner et al. have also
reported a DFT determination for copper up to 70 eV, which is
equivalent to our own at such energies. For 0−120 eV,
Hagemann’s data was chiefly obtained using transmission

Figure 2. Optical energy loss function of copper determined using
density functional theory as implemented by the WIEN2k package.
Also shown is experimental data from optical transmission measure-
ments by Hagemann et al.1 and REELS analysis from Werner et al.18

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp408438r | J. Phys. Chem. A 2014, 118, 909−914911



measurements on thin films, along with a Kramers−Kronig
transformation algorithm, while Werner’s experimental data
stems from REELS analysis.
It is important to consider first the significant differences

between the two experimental curves. Optical data in this
energy region is particularly sparse, even for commonly studied
materials such as copper, and so the significantly higher
resonance peaks measured by Werner et al. and the vastly
different structures around 60 eV are cause for concern
regarding the reliability of the measured data. This is
exacerbated by the lack of uncertainties, which is standard
practice for such measurements. In addition to the absence of
experimental optical data for many materials, the strong
variation between different measurements here clearly demon-
strates the importance of developing a theoretical benchmark.
In terms of the theoretical result, we find that although the

general form of the curve is qualitatively consistent with the
experimental results, absolute agreement is again quite poor in
many areas. First, the theoretical determination yields a much
more detailed spectrum. This is expected due to experimental
broadening effects and other uncertainties not quoted for either
data set, which would restrict the resolution of measurements
and lead to loss of structure in the ELF. One might expect that
this would have a very small effect on resulting electron IMFPs
since the IMFP calculation requires an integration over a range
of energies that would negate the contributions of such details.
In practice, however, the inclusion of detailed structure in the

optical ELF is actually very important. Figure 2 demonstrates
that DFT predicts significantly stronger losses than measured
by Hagemann et al. at the main peak energies of around 20 and
28 eV, and higher losses than Werner et al. around 30 to 50 eV.
Because of the restrictions from optical sum-rules,30 extra losses
in these parts of the spectrum mean lower losses at higher
energies, as seen in the figure. These sum-rules are often used
to check the consistency of optical data; however, they are
ultimately only able to demonstrate plausibility over a wide
energy range and do not constrain the detailed structure of the
ELF in the small region that is our concern.
The reordering of the loss spectrum does not change the

total losses overall, but it does affect the IMFP at finite energies.
As discussed in the previous section, the form of eq 11 ensures
that the low-energy behavior of the optical ELF has an
exaggerated effect on the low-energy IMFP. This is especially
true for energies where the IMFP is asymptotic.
The reliability of the theoretical result may be evaluated in an

approximate fashion by consideration of the stability of the
calculation with respect to a number of computational
parameters. Although it is impossible to meaningfully quantify
the gross theoretical error, we are able to demonstrate in Figure
3 the variation expected by weakening convergence criteria and
making small changes to our physical model.
Here, we see that the result is extremely well converged with

respect to the number of component plane-waves making up
the LAPW computation, in addition to the maximum plane-
wave momenta. The theory is more sensitive, however, to
variations in muffin-tin radii and the inclusion of local orbitals
in the LAPW basis. The muffin-tin radius is a nonphysical
parameter, separating the regions around atomic cores from
interstitial areas where electronic wave functions are
represented in terms of plane waves. This radius should be
set as small as possible without leakage of core-state wave
functions, which are best described entirely in terms of
spherical harmonics. The inclusion of local orbitals is also

strictly nonphysical, though in some cases can be necessary in
order to describe the local form of high-energy continuum
states, for use in the determination of transition matrix
elements.
The uncertainties of our calculations are necessarily over-

estimated by Figure 3, as we have wilfully deconverged our
results. However, we can propagate these variations using the
maximum-variational envelope in order to obtain a maximum
expected range of IMFP values following the partial-pole
transform outlined in the previous section. Figure 4 shows the

electron IMFP for copper calculated using both the theoretical
optical ELF of Figure 2 (solid blue curve) and the commonly
used measurement from Hagemann et al.1 (dashed red curve).
A recent experimental determination of the electron IMFP
using high-precision X-ray absorption fine structure (XAFS)
measurements is also presented (solid black curve),7 along with
a reduced-value theoretical curve, which includes the effect of
plasmon broadening following the Mermin analysis of our
previous work,14 as well as a confidence interval based on our
maximum-variational analysis of the ELF from DFT.
The importance of small variations in the very low-energy

region of the ELF is well illustrated. Although the clearest point
of difference between the theoretical and experimental ELFs are
the two extra large theory peaks at 20 and 28 eV, the theoretical
IMFP actually comes in higher (i.e., with lower losses) than the

Figure 3. Optical energy loss function of copper determined using
different convergence criteria and modeling within the WIEN2k
implementation of density functional theory. Differences are
established using 10% variations in numerical parameters, in addition
to inclusion of localized basis functions for the s, p, and d orbitals.

Figure 4. Electron inelastic mean free paths of copper calculated using
theoretical optical loss data (solid blue curve) and measured optical
loss data from Hagemann et al. (dashed red curve) compared with
recent measurements using high-accuracy XAFS spectroscopy
(black).7 Also shown is a result inclusive of plasmon broadening
quantified via a previous analysis of copper IMFPs (dotted blue
curve),14 along with a maximum-variational confidence interval.
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experimental result up to 45 eV. This is due to the small, but
critical, difference in ELFs between 0 and 15 eV.
The two major peaks are responsible for a significant

decrease in the DFT-based IMFP from around 40 eV up to the
highest energies studied. This is important because it improves
agreement with the IMFP extracted from XAFS. The XAFS
result was considered somewhat anomalous when it was first
determined, as it predicted a reduction in the IMFP of more
than 20% from many theoretical tabulations given in the
literature at 120 eV.7 Herein, we demonstrate that developing
the optical ELF calculated using DFT can account for a 7%
reduction or up to 35% of the observed discrepancy.
The dotted blue curve indicates a reduced IMFP due to the

inclusion of plasmon broadening effects, as implemented by the
Mermin theory described in the previous section. The level of
reduction for copper has been quantified in recent work
utilizing independently proposed plasmon and single-electron
excitation lifetimes.14 This inclusion leads to a remarkably
satisfying result. The dashed curve predicts electron IMFPs in
excellent agreement with experimental data between 100 and
120 eV and is within the experimental uncertainty range for
energies above 80 eV. This is a strong vindication of the
experimental XAFS data, the modeling and extraction algorithm
associated with the XAFS measurement, and also of the
theoretical ELF and IMFP developments presented herein. The
uncertainty presented with the theoretical curve is necessarily
an overestimate but reinforces that a significant reduction from
previous IMFP results is demanded not only by the recent
experiment data, but by theoretical advancements as well.
Even this improved theory persists in disagreeing strongly

with the experimental data for very low energies, up to around
40 to 50 eV. Interestingly, this problem has also been studied
recently by Nagy and Echenique, who approach the theory
from a rather different viewpoint in order to obtain a possible
lower bound on the electron IMFP for copper in this energy
range.31 The principal concern of that work was the inclusion of
the electron correlation and exchange effects, which, though
present in our DFT calculations, are absent from both the
Lindhard and Mermin representations of the momentum-
dependent behavior of the electron ELF.
Their results produce qualitative agreement with the

experimental data for energies below around 40 eV, including
a reasonable prediction of the energy at which the IMFP is at a
minimum. At higher energies, their lack of explicit consid-
eration of the band structure of copper, included naturally in
our model by the |Mn,n′(k,q)|

2 modulation, eventually causes the
model to break down. Nevertheless, their work suggests that
further understanding of exchange and correlation effects may
be significant in the current discrepancies at very low electron
energies, and provides a useful complementary approach, albeit
one that is currently incompatible with our own.

■ CONCLUSIONS
The many-pole dielectric theory has been developed to find
good agreement with experimental IMFPs for copper at
energies above 80 eV. The inclusion of necessary physical
effects due to finite plasmon resonance widths and consid-
eration of theoretical optical losses via DFT resolves the
apparent five standard error discrepancy between longstanding
literature theory and recently published experimental work.
Further, the coupling of DFT results with developments in
many-pole dielectric theory for the determination of
momentum-dependent electron ELFs without need for

experimental optical data is an important advancement in its
own right, aiding the investigation of optical and electron
energy loss functions and electron inelastic mean free paths,
and of related critical parameters in electron microscopy, X-ray
optics, and condensed matter theory.
Our results demonstrate that the use of partial- or many-pole

theories allows us to exploit the significantly more detailed loss
spectra obtainable via DFT analysis, consequently enabling
finer interrogation of experimental modeling and analysis
techniques, with particular reference in this work to recently
developed XAFS measurements of IMFPs. These consider-
ations are readily applicable to any periodic condensed matter
system, suggesting a plethora of investigations previously
unavailable due to reliance on experimental optical data,
which may be unavailable or unreliable, particularly at energies
in the critical plasmon-excitation region below 120 eV.
Finally, the comparison of our results with XAFS-based

measurements provides insight into the fundamental physical
processes responsible for observed differences between theory
and experiment. We have been able to demonstrate the
applicable energy range and potential magnitude of IMFP
dependence on the detailed form of the optical ELF for copper.
We have also shown the energy range of importance for
plasmon broadening effects, and with reference to other
recently published work,31 it can be seen that these effects
are complementary to, and distinguishable from, potential
changes in IMFP due to considerations of electron exchange
and correlation.
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