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X-ray powder diffraction and synchrotron radiation have been used to
determine the lattice parameter of the NIST standard reference material
(SRM 660) LaB6 as 4.156468 Åwith an accuracy of 12 parts per million (p.p.m.),
calibrated relative to the lattice parameter of the Si powder standard [a0 =
5.430940 (11) Å, Si 640b]. A discrepancy of 0.00048 (5) Å, or nine standard
deviations from the NISTreference, is observed between the currently accepted
lattice spacing of LaB6 and the measured value. Twelve different measurements
of the lattice parameter were made at beam energies between 10 and 20 keV.
The observed discrepancy in the lattice parameter is consistent for the different
energies used. The absolute values of the mean difference between the
measured and calculated 2! centroids, "2!j j, are highly consistent, between
0.0002 and 0.0004! for energies from 5 to 14 keV, and between 0.0005 and
0.0008! for energies from 15 to 20 keV. In order to determine the peak positions
with high precision, account must be taken of the observed peak asymmetry. It is
shown that significant asymmetry is due to peak broadening and must be taken
into account in order to determine accurate peak locations and lattice spacings.
The approach shows significant advantages over conventional analysis. The
analysis of peak broadening is compared with models used in Rietveld analysis.

1. Introduction

Powder diffraction is a commonly used technique in
synchrotron studies for characterizing materials (see, for
example, Ávila-Godoy et al., 2006). The high intensity of the
beam, the relative simplicity of the X-ray optics and the
tunability of wavelength from synchrotron sources widens the
applicability to powder diffraction techniques. For the deter-
mination of accurate lattice parameters and to reduce possible
correlated uncertainties, it is common to make use of a stan-
dard powder sample whose lattice parameter is well known.
For this purpose, the National Institute of Standards and
Technology has defined Standard Reference Materials
(SRMs). The 640 and 660 series SRMs are the most accurate
powder standards available: a0 = 5.430940 (11) Å for silicon
640b (Parrish et al., 1999) and a0 = 4.15 695 (6) Å for
lanthanum hexaboride 660 (Rasberry et al., 1989).

We used these two SRMs to determine the beam energies
from the known lattice parameters in an X-ray attenuation
measurement of silver, copper and gold, carried out across the
energy range from 5 to 20 keV (Chantler et al., 2001, 2003). In
the course of this analysis, we noted a systematic discrepancy
due to a small error in the ratio of the Si 640b and LaB6 660
lattice parameters (Chantler et al., 2004). In a new series of
measurements, we have collected much better statistics across
a range of energies to reinvestigate this discrepancy. Powder

patterns were recorded for both powders at each energy and
analyzed to determine the beam energy to better than 0.025%
at all energies (Rae et al., 2006). This paper now investigates
the discrepancy in the lattice parameters. Since the quoted
uncertainty in the Si 640b lattice parameter is five times
smaller than that for LaB6 660, we report a correction of the
LaB6 lattice parameter relative to the accepted value of the
lattice parameter of Si 640b (Parrish et al., 1999).

In this paper we explain the basis of the analysis and prove
the high quality of the data for this purpose. In particular,
detailed analysis reveals the importance of an understanding
of the physics of the peak broadening processes. This has
revealed a systematic due to the asymmetric broadening of
peaks with an angle-dependent bandwidth of the synchrotron
beam, which we explain and correct for. Finally, we present the
results for the corrected value of the lattice parameter for
LaB6 660 and discuss the significance of the result.

2. Experimental procedure

The Australian National Beamline Facility at the Photon
Factory synchrotron is a beamline with a large powder
diffractometer, BigDiff (Barnea et al., 1992). Other methods
including scanning goniometers with an analyser can also
potentially achieve the accuracy attained in this study, but
BigDiff is large and stable and well suited to standard cali-



brations. The diffraction patterns were recorded in 8 mm wide
strips on six X-ray image plates covering angular ranges
between approximately 15 and 160!. The image plates were
mounted around the perimeter of the diffractometer as shown
in Fig. 1. Radioactive fiducials on the perimeter of the
diffraction chamber gave a calibrated signature for the plate
locations.

In three separate experiments for copper, silver and gold
attenuation, powder patterns of the Si (SRM640b) and LaB6

(SRM660) standard materials (unsorted with respect to
particle size) were recorded on the image plates at 23 energies
between 5 and 20 keV.

Glass capillary tubes filled with the powders were spun
during the exposures, resulting in smooth diffraction lines. The
diameter of the tubes was 100 mm. The recorded patterns were
scanned and digitized, and the fiducial markers were used to
correct the 2! values for angular offset and possible tilt of the
image plates.

3. Analysis

Diffraction peaks were fitted with a non-linear least-squares fit
of a Lorentzian convolved with a slit on a quadratic back-
ground. A simple Lorentzian or Gaussian is still useful, but a
two-component profile is generally superior, especially in
accounting for the tail profiles. Peak centroids were deter-
mined to a precision between 0.001 and 0.0001!, as illustrated
in Fig. 2. Reduced #2

r values varied from 1 to 10 for a typical
energy.

The standard goodness-of-fit measure in powder diffraction
studies has been the mean difference between the measured
and calculated 2! centroids for the full or selected range of
peaks measured. These "2!j j values varied between 0.0002 and
0.0004! for energies up to 14 eV, and between 0.0004 and
0.0007! from 15 to 20 keV. This consistency should be
compared with the seminal work of Hart et al. (1990), which
obtained "2!j j values varying between 0.0003 and 0.0005! for
energies of 9 and 12 keVafter investigating only 12 reflections
and omitting the Si 111 reflections. Hastings et al. (1984) obtained "2!j j of approximately 0.003!, with a zero offset error

of approximately 0.03!.
Fig. 3 shows the "2!j j variation between the measured and

calculated 2! centroids for each experimental energy. The
"2!j j are very small because of the high precision with which
the peak central positions are determined. For all of the "2!j j
values, there was no significant residual systematic structure in
"2!. Fig. 2 shows an example of the absence of residual
systematic variation of "2! with 2!.

The peak angular positions are offset due to the six image-
plate offsets "!pi (i = 1 to 6) and the eccentricity of the powder
sample. The values of "!pi are confirmed by the consistency of
the zero position of the straight-through beam as illustrated in
Fig. 4. The determined centroid position of a reflection in the
positive angular region of the plates is compared with the
equivalent position for the negative angular region of the
plates (i.e. the region 0 to 90! is compared with the region 0 to
"90!). Different plates do not cover the full 90! range as there
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Figure 1
Schematic diagram of the sources of error in peak position. Image plates
are mounted around the perimeter of the diffractometer of radius
57.3 cm. Each plate has an angular offset that must be fitted.

Figure 2
An example of lanthanum hexaboride peak angle residuals after fitting:
E = 20 keV, 46 peaks. Note the narrow range of residuals and the
consistency within a few $ for each peak. Image plates have gaps between
them, so not every peak is found on the four image plates used for this
particular lattice determination at 20 keV. Note that the vertical scale is
highly expanded compared with other literature.

Figure 3
"2!j j values varied between 0.0002 and 0.0004! for energies up to 14 eV,
and between 0.0004 and 0.0007! from 15 to 20 keV. Triangles are
measurements using the Si 640b standard; diamonds are measurements
using the LaB6 660 standard. Consideration of each set of "2! values for
each "2!j j average on this plot revealed no remaining systematic structure
in the residuals.



are angular offsets between the plate alignments of this
diffractometer.

In this illustration, plates ‘4’ and ‘5’ have five peaks in
common, while plates ‘3’ and ‘6’ have some 15 peaks in
common. For each location where both positive and negative
regions have yielded an accurate centroid for a peak, the mean
of the two values gives the interpreted zero position of the
straight-through beam, and tests this determination and the
determination of the (four) plate offsets. The consistency is
extremely good with no significant outlying structure and very
small uncertainties.

Eccentricity of the powder sample from the centre of the
diffraction chamber is characterized by a vertical offset "y and
a horizontal offset "z. For small displacements, the corre-
sponding angular shifts are

"!y ¼
"y cos 2!

D
; "!z ¼

"z sin 2!

D
; ð1Þ

where D is the diameter of the diffraction chamber. These
forms of "y and "z orthogonalize the components and minimize
correlations between the two parameters. To determine the
energy of the beam, we fitted the angular offset of peaks with
the nominal energy E of the incident beam,

arcsin
hc

2dðEþ "EÞ

! "
¼ ! þ "!pi þ

"y cos 2!

D
þ "z sin 2!

D
: ð2Þ

The vertical offset "y had a significant effect on results and the
offset between the powder samples (mounted on different
goniometer heads) shows clearly a small 200 mm shift between
the two, due to centring of the samples (Fig. 5). The consis-
tency of this determination within uncertainty for all energies
is a strong support for the physical nature of the results.

Conversely, the horizontal offset "z had a small impact on
#2
r and the final errors, and the results are within one standard

deviation of ‘zero’ for both samples. The offset between the
powder samples (mounted on different goniometer heads) is
small, 15 mm, and is within the noise (Fig. 6). The consistency
of the largest coherent data set (for a silver attenuation
experiment with the same powder sample and image plate
location) is presented in Figs. 5 and 6. The minor variation in
the value of "z with energy is within one standard deviation of
the mean.

This upstream/downstream shift could be expected from the
increased penetration of X-rays into the silicon powder
sample compared with the LaB6 sample. This first-order effect
would change as a function of energy (not observed) and
could yield a maximum value (at low energies) of about one
third of the LaB6 internal capillary diameter, or about 30 mm.
This first-order effect is not observed and would be smaller
than the observed differences in horizontal offset. Absorption
through the powder sample therefore has negligible effect in
this experiment. The consistency of this determination within
uncertainty for all energies is also a strong support for the
physical nature of the results.

The offset "!z had a much smaller effect on the fitted energy
than the other fit parameters. It was therefore omitted in
initial analysis. Fig. 7 shows the difference between the LaB6

and Si powder energy determinations from their weighted
mean energy under these assumptions. This clearly indicates a
consistent discrepancy between the defined lattice parameters
of the materials.

There are two distinct regions in Fig. 7: below 16 keV the
energy difference and error bars are smaller than from 16 to
20 keV. This difference is strongly reflected in the mean "2!j j
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Figure 5
Fitted vertical offset of the powder sample in mm versus energy for a well
defined data subset. Triangle and diamond symbols are for Si and LaB6,
respectively. The fitted parameters are constant across the energy range
within error bars and the values are reasonable as the diameter of the
sample capillary is 100 mm.

Figure 6
Fitted horizontal offset, "z, of the powder sample in mm versus energy.
Diamonds and triangles are for Si and LaB6, respectively. The fitted
parameters are reasonable as the diameters of the samples are 100 mm.
The observed offset is a possible small geometric alignment offset of the
two powder goniometer head axes.

Figure 4
LaB6 test of the plate offsets and the definition of the zero position of the
detector, for E = 20 keV. The determined centroid position of a reflection
in the positive angular region of the plates is compared with the
equivalent position for the negative angular region of the plates (i.e. the
region 0 to 90! is compared with the region 0 to "90!). All these peaks
yield a consistent zero within one or two standard deviations and show
that the plate offsets and zero position are well determined.



values, in Fig. 3, which implies that it is due to the input
uncertainty in the peak positions.

There are nine free parameters for each energy and for each
powder in this procedure. This compares, for example, to 32
data points (peak centroid locations) for the silicon powder
at 20 keV in Fig. 8 and 68 independent data points (peak
centroid locations) for the LaB6 powder at 20 keV in Fig. 9.
The six image-plate displacements only affect peaks occurring
on the given plate, while "E (the correction to the nominal
energy), "!y and "!z affect all peaks. This makes it important to
fit all of the peaks simultaneously, because the correlation
between "!y and "!pi for each of the six image plates is
different. For the data in this experiments, "!z is sufficiently
small to be neglected, reducing the number of fitting para-
meters.

4. Peak Profile Broadening

Asymmetric broadening of peak profiles affects peak centroid
positions and must be considered in a precise measurement of
the peak position. Asymmetric broadening of the peak profiles
will be shown to be primarily due to energy bandpass, sample
size and vertical divergence. This centroid shift will be seen to
be dependent upon energy and monochromation, which in a
standard experiment should vary in a well defined manner.
This effect has not been treated previously by other authors,
and will be seen to have a significant effect upon the deter-
mination of lattice spacing, not constant for each sample or
powder. In order to investigate this effect, we must model the
full peak profile widths directly.

We have considered broadening due to:
(i) the energy bandpass of the monochromated synchrotron

beam;
(ii) the powder line curvature on the imaging plate (axial

divergence);
(iii) powder sample capillary size;
(iv) vertical beam divergence; and
(v) image plate resolution.

These are all considered below.
(vi) Additional causes of broadening including non-linear

image plate response and hence dependencies upon peak
intensity or bleaching of the plates with time are real effects
but have no impact upon the results when linearized correctly
with appropriate estimates of uncertainty from counting
statistics (Cookson, 1998).

(vii) Additional causes of hypothesized broadening in some
Rietveld or other modelling, such as monochromator setting,
correlation between channels such as that between energy and
vertical angle from the monochromator, and size or strain
functions are discussed below.

Low-angle peaks with 2! < 50! were found to have signifi-
cant broadening due to the curvature of the lines of the
diffraction peaks when integrated over a wide linear strip
(often called axial divergence). This broadening, !2!HD, of
the full width at half-maximum (FWHM) is correctly given by
Sabine et al. (1995) as

!2!HDð Þ2¼ ð0:5"Þ2 cot 2!; ð3Þ
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Figure 8
Silicon FWHM!2! as a function of angle; E= 20 keV, 32 peaks. #2

r values
from each fit are consistent and almost all data lie within one standard
deviation of the fits. Residuals relative to the Chantler model show that
the physically meaningful but simple model fully accounts for the
functional dependence of the data without additional fitting parameters.

Figure 9
LaB6 FWHM!2! as a function of angle; E= 20 keV, 68 peaks. Error bars
are consistent with Fig. 8. Residuals are relative to the Chantler model.

Figure 7
Difference between LaB6 and Si powder energy determinations from
their weighted mean energy, including a fitted parameter for the
horizontal eccentricity of the powder position, "z. LaB6 points are shown
as diamonds and Si as triangles. The LaB6 points are systematically
greater than the Si points by several standard deviations.



where " is the angle subtended in the horizontal plane by the
width of the recording strip, which was 0.4! for our experi-
ment. We note in passing that this contribution is scaled by a
coefficient between 0.5 and 2.0 depending upon the beam
width and the alignment of the beam with the image-plate
strip exposure axis. In our case, this coefficient is well
approximated by 1.0, as presented by Sabine. This contribu-
tion to broadening adds in quadrature and its magnitude is
fixed by the dimension of the chamber: there is no free
parameter, so the effect has been removed before further
processing. There is no correlation between this line curvature
and the energy bandpass even if these are fitted simulta-
neously, because the two effects are orthogonal and affect
different regions of the pattern (the high- and low-angle peaks,
respectively). This low-angle broadening can be minimized by
digitizing narrower strips, although this would lower statistical
precision.

High-angle peaks are broadened predominantly by the
energy bandpass of the beam and not by this axial divergence.
The size of the powder sample, the vertical divergence of the
beam, and the resolution of the plates all lead to a constant
broadening of all peaks as a function of angle.

The peak FWHM values !2!, corrected for this fixed
(primarily low-angle) broadening due to axial divergence
!2!HD, are plotted against 2! in Figs. 8 and 9.

Three fitting functions for these data are considered in the
plot. The first function considers the bandpass of the X-ray
beam !E=E and a constant offset !2!0 due to the size of the
powder sample, the vertical divergence of the beam, and the
resolution of the plates (Chantler et al., 2004). These widths
are not correlated, so must be added in quadrature:

!2!ð Þ2¼ !E

E
tan !

# $2

þ !2!0ð Þ2: ð4Þ

Applying equation (4) to the FWHM values for the 12
different energies resulted in consistent values for the constant
and energy-dependent terms. This supports the claim that the
terms are uncorrelated. Additionally, the covariance matrix
determined for the fit had small off-diagonal elements, indi-
cating the absence of correlation. The energy bandpass !E
was fitted to be between 2 and 6 eV (as a function of E), which
is in the typical expected range for a monochromated bending
magnet X-ray beam. The uncorrelated coefficients and the
physical motivation of equation (4) show that this is a good
and sufficient model of these accurate data sets.

An alternate function is fitted in Figs. 8 and 9, following
Sabine (1987), which takes into account the Bragg angle of the
monochromator, tan !m:

!2!ð Þ2¼ Að2m" 1Þ2 þ !2!0ð Þ2 ð5Þ

where

m ¼ tan !

tan !m
: ð6Þ

This function is valid; but in our experiments the negative
correlation between the monochromator angle and the
powder diffraction angle (the "4Am cross-term) only yields a

low-angle broadening at or below the (single) lowest order
reflection for both samples, so this formula yields almost
identical fits and #2

r as for the other models. We note that the
coefficient A represents once again the bandpass as a function
of energy.

Consider equation (4) and Figs. 8 and 9. The broadening is a
function of Bragg angle for a constant energy and constant
bandpass. Therefore, each profile has broadening which is
symmetric from the resolution of the plates, the size of the
powder sample, but there is greater broadening at higher
angles from the bandpass of the monochromated beam. Hence
the high-angle side of a given diffraction peak is broader than
the low-angle side of the same diffraction peak. This shifts the
centroid to a lower angle than the ideal position.

This is a very small asymmetry, which is perhaps why it has
not been carefully considered previously. It will lead to a small
error in an energy determination, and a small error in the
lattice spacing determination of a single sample; but it appears
that it might be the same for any sample, and hence the cali-
bration procedure between two standards or samples such as
Si and LaB6 should then cancel this error and give a correct
relative lattice spacing. This is not the case, as discussed in the
next section.

5. The effect of profile asymmetry due to the bandpass

Fig. 10 models the broadening causing this correction as a
function of angle for a specific bandpass (2 eV Gaussian
FWHM) and a specific synchrotron energy (15 keV). This
function is smooth and well behaved for any given powder
sample (e.g. silicon or LaB6) and for any given energy;
however, for a particular energy, the distribution of diffraction
peaks as a function of angle leads to differences in the mean
effect of this broadening asymmetry. Because the distribution
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Figure 10
The contribution to the peak profile width from the Gaussian model
function of the 2 eV FWHM bandpass broadening for a synchrotron
beam energy of 15 keV. The model function width varies with angle and
especially affects the higher angle peak locations. The dotted lines show
two points on the low- and high-angle sides of the designated peak from
which the derivative of the curve can be computed for the relevant Bragg
angle (Fig. 11). The broadening of the experimental data peaks is given by
the slope (derivative) of the FWHM as a function of angle, for a given
energy and bandpass. The slope and width around the peak gives the
centroid shift from the effect upon the amplitude. Although the
corresponding centroid shift is barely distinguishable, the functional
form of this shift has a significant impact upon the final results.



of high- and low-angle peaks differs between any two samples
or standards, this leads to an overall correction in the
comparison of one with another.

This profile asymmetry was corrected by a point-wise
deconvolution of a Lorentzian with width given by equation
(4). The asymmetric broadening shifts the peak to lower
angles, although the high-angle tail extends further. For high
angles, this leads to an overall centroid shift to lower angles, as
illustrated by Fig. 10.

To consider this illustration a little more, consider Fig. 11.
Fig. 11 shows the small shift introduced by this differential
asymmetry for a single peak at a given energy and angle. It is
revealed more in the small change in the centroid rather than
the minor profile asymmetry of the broadened profile.

The overall width of the peak is ca 0.047! and the decon-
volving width is ca 0.02!. Hence the fitted profile after
deconvolution is narrower (and has a higher peak amplitude)
than the full or convolved peak (the original data). The
centroid shift is always a small fraction of the deconvolving
width, and depends upon the quality of the data and the
magnitude of the slope asymmetry of the broadening function.
In this example and at this relatively high angle, a centroid
shift of 0.0005! is typical, and only one fortieth of the
deconvolving width.

This shift seems very small, is significantly less than the
standard deviation reported by the fit, and is similar for both
samples at these angles. At lower angles, the typical shift is
much smaller still. However, the net effect of fitting these
results is up to a 2$ change of the overall lattice parameter for
particular energies, noting of course that our standard error
for a given energy is quite a small number (see x7).

This correction, when implemented, improved the repro-
ducibility of the discrepancies obtained for each and every
energy. Above 16 keV it reduced the uncertainty for a given
energy; and below 16 keV the discrepancy between the lattice
spacings became more consistent. The point-wise deconvolu-
tion tends to increase the noise in a given peak and hence the
scatter of results for a particular distribution, but the trend and
dominant signature is given by the formula and by Fig. 10. The
uncertainty in the lattice-parameter measurement at a given

energy increases because of the scatter, but the results at
different energies become more uniform.

In the data sets that are uncorrected for this profile asym-
metry, the high-energy results are clearly inconsistent with the
central energy results, and the error bars of the high-energy
data do reflect this. The asymmetry discussed is larger and less
well determined at these higher energies, because the distri-
bution of reflections with angle shifts towards higher angles
and there is greater noise on individual high-angle peaks.
Hence the well determined central energies were selected for
further analysis (the eight ‘less than 16 keV’ data in the plots).
Subsequent checks and refitting showed that inclusion of the
other energies yields larger scatter, but does not change the
sign or magnitude of the discrepancy observed. Analysis of
this subset therefore reduces both random scatter (because of
the poorer statistics at the higher energies) and a larger, less
well defined systematic error.

6. Consistency of the fitting results

The fitting parameters in equation (2) are consistent across the
energy range and have physically reasonable values. For
example, Fig. 6 shows the vertical powder eccentricity. The
values are constant with energy within error bars. The LaB6

powder has a different value for "!y compared with Si;
however, this is to be expected, as the two powder samples are
mounted on two different goniometer heads. The value of
between 50 mm and 100 mm is less than the error in alignment
and is comparable with the diameter of the capillary. It is
therefore a physically reasonable parameter. This suggests
that the fitted "!y parameter is well fitted and that the fitting
parameters are not unreasonably correlated.

The fitting procedure was repeated including "!z. Fig. 6
shows the fitted "!z values for the different experimental
energies. As with Fig. 5, the values are consistent with a value
independent of energy and are physically reasonable. This
parameter "!z was a higher order effect than the plate offset
and vertical eccentricity of the powder sample; i.e. it was not so
significant, and so was included in a re-analysis. Its inclusion in
the fitting procedure leads to reduction in the 1$ error bars in
Fig. 7 and a small change to the fitted energy, within the
standard deviation of the initial determination. Fig. 7 shows
the difference between LaB6 and Si powder energy determi-
nations after including the fitting of "!z. It can be seen that
both approaches are consistent, robust and convergent with
high-quality data.

7. Lattice-parameter determination

A measurement of the LaB6 lattice parameter relative to the
Si standard was obtained by comparing the energy determi-
nations at the same energy by the two powder patterns. Since
the quoted standard deviation in the SRM lattice parameter
for Si 660b is much less than for LaB6, the Si lattice parameter
was used to obtain the LaB6 lattice parameter. At eight
different X-ray wavelengths, the obtained lattice parameter of
LaB6 was consistently higher than the SRM reference
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Figure 11
Profiles of typical fitted peaks for the measured and point-wise
deconvolved peak after removing a Gaussian for 2 eV FWHM, a
synchrotron beam energy of 15 keVand a Bragg angle of 124.35!. The full
line shows the unbroadened profile and its centroid and the dotted line
shows the asymmetrically broadened profile and its centroid as observed
in the data. The difference is the centroid shift " as indicated on the plot.



(Rasberry et al., 1989). Fig. 12 shows the consistent discre-
pancy in the ratio of the measured lattice parameter for LaB6

compared with the SRM reference lattice parameter, where
the peak positions are corrected for the six plate offsets,
vertical eccentricity of the powder sample and a shift in the
energy of the beam. The consistency of the sign of the
difference between the powder determinations is a strong case
for the conclusion that the LaB6 lattice parameter is discre-
pant, and this result strongly confirms the trend reported by
Chantler et al. (2004).

The lattice-parameter determination has been corrected for
thermal expansion, as given by Chantler et al. (2004). The
correction (and the uncertainty in the correction) is an order
of magnitude smaller than the observed discrepancy.

Horizontal eccentricity of the powder sample, "!z, was not
included in the procedure used to calculate ratios shown in
Fig. 12. Its inclusion in the energy determination had the effect
of slightly increasing the difference between values measured
for the two powders, while reducing the error in the value, as
can be seen in Fig. 7. It therefore leads to an increase in the
determined lattice parameter discrepancy. This shift is less
than 1.5 standard deviations, and hence we can consider
equally the merits of the two alternate analyses.

Fig. 13 shows the average over energy of the measured LaB6

ratio and SRM powder standard value for the value given by
Chantler et al. (2004) uncorrected for divergence (the band-
pass profile asymmetry). Compared with this baseline, the
figure shows the measurements collected here, uncorrected for
asymmetry and "z, and the final result corrected for asym-
metry.

Firstly note that, without the systematic correction for
asymmetry, the new data confirm our earlier measurement and
conclusion to within 1.2 standard deviations. The result
presented here is in agreement with the 2004 result, and
confirms both the discrepancy, the sign and the magnitude.
The correction for divergence (the asymmetry) increases the
size of the discrepancy from the literature and in particular
reduces the scatter of the independent results. This correction
will generally be necessary for high-accuracy lattice determi-
nations in the future, whether at synchrotron sources or
elsewhere.

Our best estimate of the final result is the mean of the
discrepancies with and without "z fitting, with an error bar
equal to those of either method. This final result is within 1.3
standard deviations of each of these estimates and is therefore
consistent with either.

Could the sample of the old standards (silicon or LaB6) be
changing with time? The current determination uses a
different selection of energies and more extensive reflections,
but the same unsorted sample prepared in the same manner.
Fig. 13 suggests that the results from this work and that of
Chantler et al. (2004) are fully consistent when the profile
asymmetry is not taken into account; that is, there is only a one
standard deviation shift between the two measurements. The
dominant developments in the new determination are the
improved statistics, the improved analysis and the inclusion of
detailed consideration of profile asymmetry and "z compared
with the previous works. Individual energy determinations for
several of the data sets are as low as 7 p.p.m. This is slightly
higher than the reference determination and that of Hart et al.
(1990), but has again had the advantage of investigating
systematics involving an energy dependence, becoming a
much more robust determination. This result calls for further
investigation and a more accurate determination of all asym-
metries in the profiles.

The asymmetry presented is very small but clearly signifi-
cant, is determined accurately to first order, and increases the
consistency of this high-precision data set. This asymmetry has
been neglected in all previous (Rietveld) analyses of powder
diffraction, including those determining standards, and we
have shown that the effect should be included in future
determinations. The NIST analysis certainly used asymmetry
split Pearson VII functions to fit the peaks, but this does not
address the asymmetry discussed here and may in fact amplify
the error. The NISTreference did not take account of any such
asymmetry, and the uncertainty published for both Si 640b and
LaB6 660 is likely to be affected by at least the discrepancy
reported.

A previous study by Yoder-Short (1993) also imputed a
small error in the Si 640b lattice parameter arising from the
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Figure 13
Corrections to the LaB6 lattice parameter, both including and excluding
the broadening correction, and compared with the correction reported by
Chantler et al. (2004).

Figure 12
Ratio of SRM LaB6 lattice parameter and the measured value at each
energy, including a fitted parameter for "z. The ratio is determined
separately at each energy and is consistent within 2$ from 10.5 to 20 keV.



incorrect reference wavelength used to calculate the lattice
parameter. This correction has not been taken into account in
this analysis because it represents a change that is several
orders of magnitude smaller than the discrepancy noted here.

8. Conclusion

The discrepancy in the ratio of expected lattice parameters is
1.000117 (12) following Fig. 13. The lattice parameter of LaB6

SRM 660 is therefore determined to be 4.156468 Å with an
accuracy of 12 parts per million (p.p.m.), by reference to the
defined lattice spacing of Si SRM 640b. Individual energy
determinations are accurate to 6 p.p.m. or 0.0006%. A
discrepancy is observed between the currently accepted value
and the measured value, of 0.00048 (5) Å or nine standard
deviations from the NIST reference.

The main systematic errors from the experimental geometry
have been corrected for. Energy-dependent systematic errors
are probed over a large energy range. The consistency of the
lattice parameter across the energy shows that energy-
dependent errors such as sample absorption and the energy
bandpass of the beam do not affect the result.

The discrepancy is consistent over the energy range 10–
20 keV, ruling out energy-dependent systematic errors as its
cause. Significant geometric errors have been accounted for.
The lattice-parameter discrepancy is not explained by asym-
metric broadening of the peaks; rather this asymmetric
broadening reduces the apparent discrepancy when it is not
corrected for.

Peak broadening is shown to be dominated by the beam
energy bandpass at high angles. The main physical causes of
broadening are identified and corrected for by deconvolution.

By determining the lattice parameter from the peak central
positions, possible significant effects of peak amplitude
modelling are avoided. This is an important advantage of using
peak central positions, even in synchrotron experiments where
the energy bandpass is relatively small but still remains
significant. The peak central positions technique is used to
obtain a highly accurate result and avoid many of the
systematic errors present in synchrotron experiments, but
must in fact be augmented by a direct investigation of the
profile asymmetry for high-accuracy work.

Many researchers are primarily concerned with structural
determination from powder studies; and many determine the
lattice constants and beam energies using a standard powder
comparison. This research clarifies uncertainties and accura-
cies relating to this procedure and yields a new result for
general researchers.

Common peak broadening models used in Rietveld
analyses have additional, correlated, free parameters
including amplitude and strain coefficients. Fitting these
correlated parameters yields coefficients with unphysical
values, which is explicitly not observed in our high-accuracy
data. Broadening due to particle size is not observed to be
significant in this investigation, and its inclusion in the model
can also lead to correlated and unphysical coefficients.

The present result is consistent in sign and magnitude with
the previous result of Chantler et al. (2004). This work is a
significant advance on that previous work. The best accuracy
in terms of "2!j j and individual energy determinations has
been improved. All peaks are fitted, unlike earlier work and
work by Hart et al. (1990), which excluded significant low-
order peaks and measured relatively few peaks. The deter-
mination of "y and "z is more stable, more robust, and more
explicitly physical across energy. Correct first-order allowance
for the asymmetry has been made. The variation of consis-
tency of the discrepancy with energy has required that the
central energy data be reported as a highly accurate deter-
mination. This implies that a residual systematic remains in the
data; this is most likely due to additional profile asymmetry,
and would be expected to yield a more consistent and reliable
result after such further correction. Of course, such a deter-
mination will require further careful experiments.

Hence this result currently represents the best determina-
tion of the lattice parameter of LaB6 660. Future work must
continue this effort for all accurate powder diffraction deter-
minations and in particular must consider the newer standards
640c and 660a.

APPENDIX A
Other approaches to peak profile broadening

Some previous studies have found correlation between fitting
parameters when too many correlated parameters are
included. In relation to the model used in this study, it is
important to consider the other widely cited models in the
literature.

Avariation of equation (4) is often used in Rietveld analysis
(Albinati & Willis, 1982) with arbitrary meaning for the three
coefficients:

!2!ð Þ2¼ A tan2 ! þ B tan ! þ C !2!0ð Þ2: ð7Þ

This equation was derived for neutron spectroscopy (Caglioti
et al., 1958) and has been interpreted to represent the particle
size effect (Rietveld, 1969). However, the first component is
indistinguishable from the effect of the energy bandpass, and
the second component can represent correlation between
these two effects. In almost all real X-ray investigations, the
energy bandpass will dominate at high angles, as demonstrated
by equation (4). This is also the case with the current data: the
curvature of the plots is correctly represented by just the
energy bandpass of the synchrotron beam.

The free parameters in equation (7) are not constrained to
be positive, so that the B coefficient will usually become
negative, especially if the transverse curvature of lines repre-
sented by!2!HD is not corrected for. This negative value for B
is almost always unphysical (representing an independent
process which narrows the diffraction width).

A correlation of the energy E on a part of the capillary with
the vertical angle incident upon that part of the powder
sample is possible, and would yield a correlated coefficient
(B), which could be negative; but then B would have a
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different sign for peaks above the axis of the capillary versus
the symmetric peaks below that axis, on the opposite side of
the diffracting circle. In our data, such a correlation is not
observed and after correction for !2!HD, both functions
returned similar #2

r values with a B coefficient consistent with
zero within uncertainty. For example, in Fig. 9, #2

r values were
4.26 and 4.54 for the two cases. Most of this #2

r is given by one
outlier, which does not affect the fit.

Another function commonly used in powder diffraction,
including in the determination of the current SRM powder
standards (Rasberry et al., 1989; Cheary & Coelho, 1992),
accounts for the particle size effect in the following manner:

!2!ð Þ ¼ A tan ! þ B= cos !: ð8Þ

This formula is not supported by our data. The coefficient A of
the energy dispersion term is negative when fitted (poorly),
and A2 could correspond to the !E=Eð Þ2 of the simpler
models. Since the particle size term should be uncorrelated
with the energy bandpass, the correlation should be orienta-
tionally dependent and hence average to zero for a spinning
sample. Indeed, if this negative implies a narrowing of the
width due to the bandpass of the beam, then it must be
unphysical.

Dynamical diffraction broadening has been neglected in
this discussion, because image-plate and pixel broadening
dominates over the intrinsic width. The key exception to this is
the case of the lowest order reflection. This dynamical
broadening of the lowest order peaks was looked for but was
negligible in the analysis. Hence all significant physical sources
of broadening have been assessed and the results of this fitting
procedure yield physical, stable and accurate results for the
width functionality.
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