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c We develop a self-energy screening approximation suitable for multi-electron atoms.
c This approximation is tested in a number of few- and many-electron systems.
c We obtain superior agreement with experiment compared with existing approximations.
c An implementation of this approximation is provided for use with GRASP2K.
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Atomic structure calculations have reached levels of accuracy which require evaluation of many-

electron QED contributions. Since exact analytic solutions do not exist, a number of heuristics have

been used to approximate the screening of additional electrons. Herein we present an implementation

for the widely used GRASP atomic-structure code based on Welton’s concept of the electron self-

energy. We show that this implementation provides far superior agreement compared with a range of

other theoretical predictions, and that the discrepancy between the present implementation and that

previously used is of comparable magnitude to other sources of error in high-accuracy atomic

calculations. This improvement is essential for ongoing studies of complex atomic systems.

& 2013 Elsevier Ltd. All rights reserved.
1. Quantum electrodynamics and self-energy

Both classically and in quantum field theory, the electromag-
netic field of the electron can interact with the electron itself. In
both cases, this interaction results in an infinite energy associated
with the electron (Sakurai, 1967). In quantum field theory, this
interaction corresponds to an electron emitting a virtual photon,
which is then reabsorbed by the electron – the Feynman diagram
for this interaction is presented in Fig. 1. The energy associated
with the interaction between the electron and its own electro-
magnetic field is the self-energy of the electron.

This self-energy results in observable effects. Most famously it
is responsible for the Lamb shift (Lamb and Retherford, 1947;
Bethe, 1947). In order to obtain a finite numerical result, the
infinite portion of the integral is required to be removed by the
process of renormalisation, which can also include a finite energy
cut-off. Since the classical electromagnetic self-energy is thereby
removed or renormalised, this energy shift is a purely quantum-
mechanical phenomenon. It arises due to the interaction of the
All rights reserved.
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electron with the quantised electromagnetic field. In quantum
field theory, these quantum fluctuations of the electromagnetic
field strength are also responsible for spontaneous emission.

Early self-energy corrections were carried out to first-order in
Za (Bethe, 1947). In the early 1970s, Mohr provided an atomic
self-energy formulation within the bound-state Furry formalism
in a suitable form for direct numerical evaluation, used to
evaluate the self-energy for ground-state hydrogenic atoms
(Mohr, 1974). Later work extended this to include n¼2 hydro-
genic systems (Mohr, 1983) and more recent studies have
evaluated hydrogenic self-energies for n¼3, 4, 5 (Mohr and
Kim, 1992; Indelicato et al., 1998; Le Bigot et al., 2001). There
have been no generalisations of the self-energy calculations to
arbitrary N-electron atomic systems.

Without exact solutions, atomic structure packages use an
approximation to the self-energy. This can be obtained by taking
the exact hydrogenic results of Mohr and successors and reducing
them by some screening factor to allow for multiple electron
interactions. These factors aim to represent some scaling from the
hydrogenic system to the system of interest, yet their form is of a
wide variety. From Mohr (1974) we have that EH

SE ¼ ða=pÞðZaÞ
4

FðZaÞmec2. Approaches used to derive a multielectron self-energy
include using the mean radius to determine an effective Z for that
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Fig. 1. Feynman diagram for the first-order QED contribution to the electron self-

energy.

Fig. 2. Feynman diagrams for the self-energy screening correction in two-electron

systems.
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wavefunction (Dyall et al., 1989; Parpia et al., 1996), scaling
Mohr’s hydrogenic results by the ratio of the wavefunction
amplitude at the origin to that of a hydrogenic wavefunction at
the origin (Kim et al., 1991), by the projection of the wavefunction
onto a hydrogenic wavefunction (in source code Jonsson et al.,
2007), by the weighted projection of the wavefunction onto a
hydrogenic wavefunction (Jonsson et al., 2007), or some other
similarly calculated ratio.

The GRASP packages (Grant et al., 1980; Dyall et al., 1989;
Parpia et al., 1996; Jonsson et al., 2007) are amongst the most
widely used atomic structure programs with several thousand
citations for the various versions. However, even the most recent
versions of GRASP make use of outdated self-energy values and
screening factors (Indelicato et al., 2007; Blundell, 1993b). Recent
theoretical evaluation of photoionisation in complex systems is
reaching sub-eV accuracy with the GRASP2K package (Lowe et al.,
2010, 2011; Chantler et al., 2010, 2012), and therefore improve-
ment of these QED approximations is necessary.

The next most significant quantum-field-theoretical effect on
atomic energy levels is vacuum polarisation. The vacuum polar-
isation can be computed to second-order from the expectation
value of the Uehling potential (Uehling, 1935; Wichmann and
Kroll, 1956), and to fourth-order from the expectation value of the
Källén-Sabry (Källén and Sabry, 1955) potential. In GRASP2K
both of these contributions are evaluated using the methods
outlined in Fullerton and Rinker (1976). The use of computed
wavefunctions to evaluate these expectation values means that
the dominant contributions of electron screening are automati-
cally included.

In the Welton concept for the electron self-energy, the inter-
action of the electron with the electromagnetic field does not
cause any real energy changes. Rather, the interaction perturbs
the motion of the electron, causing it to explore a larger region of
space than it would otherwise (Welton, 1948). In the case of an
atomically bound electron, this reduces the overlap between the
electron and the nucleus, and it is this change of potential and
screening which causes the energy shift of the electron (Fig. 2).

Due to fluctuations in the electromagnetic field, Welton (1948)
showed that a free electron will experience oscillations in posi-
tion, with a mean-square radius of

/ðDxÞ2S¼
2

p
e2

_c

_

mc

2
 !Z k

k0

dk

k
: ð1Þ

This integral diverges at both the upper and lower limit. The
upper limit is truncated at k¼mc=_ and the divergence at the
lower limit disappears for an electron in any sort of potential.
Following the concept of Welton (1948), we consider an electron
moving in a potential V(x). Denoting the part of the electron
motion due to fluctuations in the electric field as Dx, the
instantaneous potential energy can be written as

VðxþDxÞ ¼ ð1þðDx � rÞþ1
2ðDx � rÞ2þ � � �ÞVðxÞ: ð2Þ

The average potential energy is then

/VðxþDxÞS¼ ð1þ1
6/ðDxÞ2Sr2

þ � � �ÞVðxÞ, ð3Þ

and the contribution to the potential energy due to the electron’s
perturbed motion is proportional to r2VðxÞ. This suggests
implementing a screening factor

ESE ¼
/f9r2VðxÞ9fS

/fH9r2VðxÞ9fHS
EH

SE: ð4Þ

Approximations based on this approach have been implemen-
ted in some codes (Indelicato et al., 2007; Indelicato and
Desclaux, 1990; Kim et al., 1991; Indelicato et al., 1987;
Blundell, 1993a). Indelicato and Desclaux (1990) and Kim et al.
(1991) replace Eq. (4) with a screening based on the two-electron
correction to the self-energy for states with 9k9Z2,

ESE ¼
/f9ba � E9fS

/fH9ba � E9fHS
EH

SE, ð5Þ

where a are the Dirac matrices.
Eq. (4) is zero when we are considering a wavefunction with

9k9Z2 around an infinitely dense nucleus, resulting in no screen-
ing. We propose the use of finite nuclei in our calculations, so
have kept the first order term (Eq. (4)) consistently throughout
our implementation instead of using Eq. (5) as previous
authors have.

We have found excellent agreement using Eq. (4) with the
perturbation theory calculations of Indelicato and Mohr (2001)
and the all-orders calculations of Artemyev et al. (2005), and have
therefore retained it for all wavefunctions. Blundell (1993a) uses a
screening implementation including only the leading term, how-
ever Blundell only investigated a small number of test cases to
compare phenomenological methods with more rigorous ones.

In the present work, we provide our proposed implementation
of Eq. (4) for the GRASP2K software package. We demonstrate
that this implementation provides better agreement with avail-
able theoretical two- and three-electron screening calculations
than any of the other approximations used in the literature, and
we demonstrate that it is competent to address many-electron
systems with physically plausible behaviour.
2. The Thomas-Fermi nuclear potential

The Fermi model for the nuclear charge distribution is useful
for finite-difference methods because all derivatives are finite and
continuous. The model is defined as

rðrÞ ¼ r0

1þeðr�cÞ=a
ð6Þ

where a and c are constants relating to the nuclear size and skin
thickness. By Poisson’s equation

r
2VðrÞ ¼

r0

E0ð1þeðr�cÞ=aÞ
ð7Þ

which allows convenient numeric determination of r2VðrÞ for use
in computation which we have implemented in GRASP2K.

We also considered contributions to V(r) from the mean
electron distribution, since r2VðrÞ is proportional to the charge
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density. We found that this did not alter the self-energy screening
when smoothed over a range of atomic numbers, but did
introduce a great deal of non-physical noise associated with the
finite grid on which it was calculated. For this reason we have
implemented the more robust analytic approach.
3. Implementation

The reference hydrogenic values used in GRASP2K’s self-
energy calculations are those from Mohr (1983). This work
calculated self energy values for electrons in hydrogenic systems
with n¼1, or 2 and 10rZr40. Since then, Mohr and others have
performed new high accuracy calculations that have extended
this range significantly.

Mohr and Kim (1992) use improved numerical techniques to
extend hydrogenic calculations to states with principal quantum
number n¼3, 4, and 5 and 1=2r jr3=2 and for nuclear charge
10rZr110. Le Bigot et al. (2001) use high-accuracy computa-
tional methods to calculate the low-energy part of the self energy.
This allowed extension of self energy calculations of Mohr (1983)
to include electrons with n¼3, 4, or 5 and angular momentum
5=2r jr9=2 for hydrogenic computations.

Mohr and Soff (1993) also performed complete self-energy
calculations for a number of hydrogenic states using finite nuclear
charge distributions. These were in the range 26rZr100 and for
the states 1S1=2,2S1=2, and 2P1=2. Beier et al. (1998) extended this
work and determined finite nuclear size corrections for all
hydrogenic atomic systems in the range 26rZr110. These
results form the basis of the finite nuclear size corrections
included in our modified GRASP2K. However, we also desired
that the nuclear size corrections reflect the nuclear conditions
chosen by the user which are not necessarily the same RMS
charge radii used by Beier et al. (1998). Mohr and Soff (1993)
derived an empirical relation between the self-energy correction
and nuclear radius, however the coefficients for this functional
form were only given for three elements. We have extrapolated
these coefficients logarithmically across the range 1rZr110 for
inclusion in GRASP2K. Logarithmic extrapolation provided the
best consistency with the values determined by Mohr. Results are
presented in Fig. 3.

Finally, results of Le Bigot et al. (2001) were extrapolated
linearly from the lowest value originally calculated (Z¼60) to
Z¼1. The accuracy of this extrapolation is likely to suffer, but at
low Z the contribution from these high-energy angular
Fig. 3. Total self-energy for electrons in hydrogenic orbitals, using Mohr (1983),

Mohr and Kim (1992), Mohr and Soff (1993), Beier et al. (1998), and Le Bigot et al.

(2001) with extrapolation methods described in text.
momentum is tiny so even a poor approximation is better than
the previously used method to treat the electron as if it had lower
angular momentum. Hence this is now implemented.

Yerokhin and Shabaev (1999) and Sapirstein and Cheng (2006)
have also computed one-loop self-energy contributions to
hydrogen-like atoms. Their results are consistent with those of
Mohr and collaborators to within 1%. In most cases the discre-
pancy is much smaller than 1%. The use of these values instead of
Mohr’s would not significantly alter our results or conclusions.
We use the references listed as they represent the most complete
collection of values available, as presented in Fig. 3.
4. Results

Direct experimental QED measurements in multi-electron
systems are difficult to make. Furthermore, there are no entirely
analytic determinations of the QED energy in arbitrary multi-
electron systems. Instead we compare our numerical results with
the available theoretical results, which have been determined
using a number of high accuracy techniques.

Dominant screening naturally occurs where the self-energy
terms themselves are largest, namely for ground state terms
including 1s2 configurations, as presented in Fig. 4. In the
helium-like system, advanced theoretical computations have
generated detailed predictions, and alternate heuristics or Welton
approaches can be directly compared to these.

Yerokhin and Shabaev (1995) and Yerokhin et al. (1997) have
used partial-wave techniques to derive results for a number of
helium-like and lithium-like systems. Artemyev et al. (2005)
extended their work to include all orders of contribution in Za,
and claim a high degree of accuracy in the high-Z region.
Indelicato and Mohr (2001) use a different approach, applying
perturbation theory to determine self-energy screening contribu-
tions for a wide range of nuclear charge and electron quantum
number. For the systems considered here, Indelicato and Mohr
(2001) results generally indicate slightly less screening than
Artemyev et al. (2005), but both follow similar trends.

Four different approximation methods have been used, and
comparison is made to whichever theoretical results are available
for the system in question. The GRASP2K package, as it exists on the
Computer Physics Communications library, approximates the
screening coefficient by taking the overlap integral of the wavefunc-
tion and a hydrogenic wavefunction in the region rr0:0219a0. We
Fig. 4. Screening contributions to helium-like ground state self-energy 1s2 1S0.

Comparison of past screening heuristics with the new approach (lines) and with

high-accuracy theoretical calculations (symbols) gives a strong indication of the

improvement obtained.



Fig. 6. Self-energy screening contributions to the 1s2p1
1=2J ¼ 1 isoelectronic

sequence. Comparison of the existing screening method available in GRASP2K

with new approximations (lines) and high-accuracy theoretical results (symbols).

Similarly to Fig. 5, Eq. (4) and the original GRASP2K approximation diverge at

high-Z. Interestingly, they diverge in opposite directions. Eq. (4) provides better

comparison to theory in both cases.

Fig. 7. Self-energy screening contributions to the 1s12p1
1=2J ¼ 1-1 s12p1

3=2J¼ 1

fine structure energy separation. Both the original approximation and Eq. (4)

capture the functional form of the screening contribution. However, only Eq. (4)

provides reasonable agreement with advanced theoretical predictions.
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have included this approximation in our results, labelled ‘Original
GRASP2K Screening’. An alternative method used previously is the
total overlap integral of the actual wavefunction with a hydrogenic
wavefunction. We have re-considered this approximation method
and it is labelled ‘Hydrogenic Overlap’ in our results (however, this
gives a largely null or hydrogenic screening independent of Z).

For the sake of completeness we have included a method
based on the ratio of the electronic wavefunctions at r¼0. The
rationale behind this method is the identification of the electron-
self energy as arising from the nuclear Laplacian, which is non-
zero only at r¼0 for a point nucleus. This method provides poor
results for finite-nuclear charge distributions. Finally, we include
the new approximations based on the Welton interpretation. This
method is derived in detail in Section 2. These alternatives are
then compared to the results of Yerokhin and Shabaev (1995),
Yerokhin et al. (1997), Artemyev et al. (2005), Indelicato and
Mohr (2001), and Persson et al. (1993).

In this most significant case, the new implementation is far
superior to other implementations following Welton’s concept,
and indeed is in very close agreement with that of Indelicato and
Mohr (2001). Arguably the advanced methods of Artemyev et al.
(2005) are currently the most accurate available, and there is a
significant but relatively small discrepancy of our implementation
from these.

For configurations of 1s2p, the dominant screening arises from
the 1s electron which is however relatively weakly screened by
the 2p electron Figs. 5 and 6. In both cases, the new implementa-
tion agrees well with advanced methods.

The screening contribution to the 2p3=2�2p1=2 fine structure
energy separation is a useful test of this implementation, and is
presented in Fig. 7. Here the new implementation clearly reflects
the structure and functional relationship of the self-energy
screening and is accurate to better than 1 eV for all Z.

It is clear from Figs. 4–8 that Eq. (4) reproduces the accurate
theoretical results much better than any of the other three
approximations. In the case of the hydrogenic systems, the
original GRASP2K provides reasonable results, and produces
results that track the changes in screening quite well, however
Eq. (4) produces numerically superior results in all cases.

To probe the many-electron system, we provide a few illus-
trative comparisons. In the case of the lithium Lamb shift, Eq. (4)
is the only method that produces valid results. All three other
methods fail to match the functional form of the isoelectronic
Fig. 5. Self-energy screening contributions to the helium-like 1s2p3=2J¼ 1 iso-

electronic sequence. Comparison of the existing screening method available in

GRASP2K with new approximations (lines) and high-accuracy theoretical results

(symbols). Eq. (4) produces similar results to the original screening method at low

Z, but at high Z diverges and shows better agreement with advanced theory.

Fig. 8. Self-energy screening contributions to the Lamb-shift in the lithium-like

isoelectronic sequence. In this more complex atom, the other available approx-

imations do not even capture the form of the sequence. Our approximations agree

well with the high-accuracy theoretical work of both Persson and Yerokhin.
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sequence. We have also plotted the three-electron screening
calculated by Indelicato and Desclaux (1990). Our results are very
similar for Z¼15 and Z¼54 but are 0.15 eV lower for high-Z Li-
like uranium, which places them in better agreement with
Persson et al. (1993) and Yerokhin and Shabaev (1995).

This method can be applied to arbitrary N-electron systems,
and in Fig. 9 we present screening contributions to the ground
state of the neon-like isoelectronic sequence. Here we have no
obvious detailed prediction with which to compare, yet it is
reasonable to have some confidence in the prediction compared
to earlier methods.

A comparison of our results to the results of Sapirstein and
Cheng (2006) in copper-like atoms is presented in Fig. 10. Here
we are comparing a relatively small value, and therefore present
the relevant functional FðZaÞ for this valence electron. Sapirstein
and Cheng (2006) calculate the self-energy of the 4s electron in
copper using a screened Kohn-Sham potential. This comparison is
useful as it tests the screening approximation in a many-electron
atom where screening effects are comparable in magnitude to the
unscreened self energy. Both the original GRASP2K screening
method and that based on Eq. (4) show excellent agreement with
Sapirstein and Cheng (2006), with a maximum discrepency of
o0:05eV for either method.
Fig. 9. Self-energy screening contribution to the Ne-like ground state isoelectronic

sequence. The absolute discrepency between the screening approximations

increases with both the number of electrons in the system and nuclear charge.

Fig. 10. FðZaÞ for the 4s electron in copper-like ions. The results of the screening

methods described in text are compared to the work of Sapirstein and Cheng

(2006), and to the unscreened values.
For medium-Z, neutral or near-neutral systems the self-energy
screening is essential to high-accuracy calculations. The contribu-
tion to the Ka spectrum in the 3d transition metals is of order 0.1–
1 eV, and the differences between the screening methods are
smaller than, but of comparable magnitude to, the primary
uncertainty in these calculations which arises due to convergence
issues.
5. Conclusion

High accuracy atomic structure calculations are necessary in a
wide range of fields. Previously, inaccuracies in atomic structure
calculations were primarily due to errors introduced through the
central field approximation and poor wavefunction convergence.
These calculations are now at the stage where computational
inaccuracies are of a similar magnitude to inaccuracies in
quantum-electrodynamic approximations. In order to calculate
accurate atomic data these approximations must be improved.

We have presented here a modification to the widely used
GRASP2K atomic structure package which improves the determi-
nation of the leading-order QED contribution to multi-electron
systems. As well as updating the program to use the latest
available hydrogenic values and modifying it to account for
finite-nuclear-size effects, we have also implemented a self-
energy screening approximation based on the Welton interpreta-
tion of the self-energy. These have been compared to available
theoretical values for selected 2-, 3- and many-electron systems
and we have found that the new approximations are in much
better agreement with advanced dedicated approaches. The new
version of the software is available for download at supplemen-
tary material with this manuscript, on-line; or is available on the
author’s homepage at http://www.ph.unimelb.edu.au/�chantler/.
Appendix A. GRASP2K implementation

The modified version of the GRASP2K, ‘‘rci2’’ package now uses
Eq. (4) to calculate the electron self-energy screening by default,
and also presents the user with additional non-default options.
The user is able to select a screening approximation from the
following options:

E1
SE ¼ EH

SE ðA:1Þ

E2
SE ¼

/f9r2VðxÞ9fS

/fH9r2VðxÞ9fHS
EH

SE: ðA:2Þ

E3
SE ¼

/cro0:02199cro0:0219S

/cH
ro0:02199c

H
ro0:0219S

EH
SE ðA:3Þ

E4
SE ¼

cðr¼ 0Þ

cH
ðr¼ 0Þ

EH
SE ðA:4Þ

E5
SE ¼/cH9cSEH

SE ðA:5Þ

E2
SE is the method described in this paper. E3

SE uses the ratio of
the actual wavefunction density in a small region around the
nucleus to the equivalent density for a hydrogenic orbital as a
screening parameter, E4

SE uses the ratio of the actual wavefunction
density at r¼0 to the ratio of a hydrogenic wavefunction at r¼0,
and E5

SE uses a monopole projection of the actual wavefunction
onto a hydrogenic wavefunction.

The ‘‘rci2’’ package now presents an additional prompt is
asking the user to select a radial wavefunction file containing
hydrogenic wavefiles. This file must be in a GRASP2K unformatted
file (GRASP2K contains tools for converting file formats if

http://www.ph.unimelb.edu.au/~chantler/
http://www.ph.unimelb.edu.au/~chantler/


J.A. Lowe et al. / Radiation Physics and Chemistry 85 (2013) 118–123 123
necessary). If the user does not wish to provide this then one of
the non-default options can be chosen.

As the modifications have been written to the Fortran77
standard there should be no additional compilation complexities.
There is also an option for a full debugging output. This will write
subshell-specific screening coefficients, effective FðZaÞ values, and
finite nuclear-size contributions to a ‘screening.sum’ file. The
changes are provided as a .patch file. In order to install, the
GRASP2K package can be downloaded from the CPC software
library. The .patch file should then be copied into the GRASP2K
root directory and the command ‘patch �p1oslfenrgy:patch’ will
install it. GRASP2K can then be compiled as usual.
Appendix B. Supplementary data

Supplementary data associated with this article can be found
in the online version at http://dx.doi.org.10.1016/j.radphyschem.
2013.01.004.
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