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Accurate experimental XAFS (X-ray absorption fine-structure) data including

uncertainties are required during analysis for valid comparison of results and

conclusions of hypothesis testing on structural determinations. Here an

approach is developed to investigate data without standard interpolation of

experimental data and with minimal loss of information content in the raw data.

Nickel coordination complexes bis(i-n-propylsalicylaldiminato)nickel(II) (i-pr)

and bis(N-n-propylsalicylaldiminato)nickel(II) (n-pr) are investigated. The

additional physical insight afforded by the correct propagation of experimental

uncertainty is used to determine newly refined structures for the innermost co-

ordination shell. Two sets of data are investigated for each complex; one

optimized for high point accuracy and one optimized for high point density.

Clearly both are important and in this investigation the quality of the physical

insight from each is directly provided by measured and propagated uncertainties

to fairly represent the relevant accuracies. The results provide evidence for an

approximate tetrahedral geometry for the i-pr Ni complex that is more

symmetric than previously concluded, with our high point accuracy data yielding

ligand lengths of 2.017 � 0.006 Å and 2.022 � 0.006 Å for Ni—N and Ni—O

bonds, respectively, and an even more skewed square-planar (i.e. rhombohedral)

arrangement for the n-pr complex with corresponding bond lengths of 2.133 �
0.004 Å and 1.960 � 0.003 Å. The ability to distinguish using hypothesis testing

between the subtle differences in XAFS spectra arising from the approximate

local tetrahedral and square-planar geometries of the complexes is also

highlighted. The effect of standard interpolation on experimental XAFS spectra

prior to fitting with theoretical model structures is investigated. While often

performed as a necessary step for Fourier transformation into position space,

this will nonetheless skew the fit away from actual data taken, and fails to

preserve the information content within the data uncertainty. The artificial

effects that interpolation imposes on �r
2 are demonstrated. Finally, a method for

interpolation is introduced which locally preserves the �r
2 and thus information

content, when a regular grid is required, e.g for further analysis in r-space.

1. Introduction

X-ray absorption fine structure is the series of oscillations

observed in the absorption spectrum following an absorption

edge due to interference of the photoelectron wavefunction

back-scattering from nearby atoms. Despite containing

detailed information on the arrangement of atoms in the local

region around the central absorber, high-precision determi-

nation of physical characteristics relies on accurate fitting of

theoretical models with the experimental data. To date, data

collection has not defined uncertainties nor propagated them

into hypothesis testing and structure determination, with the

exception of the X-ray extended range technique (XERT)

(Chantler, 2009). While fingerprinting of XANES (X-ray

absorption near-edge structure) and, for example, pre-edge

features can be assessed to useful levels without least-squares

ISSN 1600-5775

electronic reprint



analysis or principal component analysis, distinguishing alter-

nate structures, ligands and shells needs a reliable �2
r measure

of goodness-of-fit (Koningsberger et al., 2000; Chantler et al.,

2012).

Techniques including X-ray crystallography and neutron

diffraction can be used in structure determination (Ladd &

Palmer, 1977) to a high degree of accuracy, though they have

obvious limitations when the sample of interest is in non-

crystalline, solution or dilute form. The extended X-ray

absorption fine-structure (EXAFS) region of the absorption

spectrum is useful in determining the structure of isolated

molecules (Sayers et al., 1971; Eisenberger & Kincaid, 1978),

and has proven to be a powerful tool in subtle structural

determination (Mazzara et al., 2000; Chantler et al., 2012).

Following one of many standard pre-edge removals, the

experimental data are transformed into �ðEÞ by

�ðEÞ ¼ ½�=��ðEÞ � ½�0=��ðEÞ
½�0=��ðEÞ

ð1Þ

where ½�0=��ðEÞ estimates the isolated atom background

curve. Depending upon formalism, this pre-processing

removes background effects from a matrix and solvent and

any absorption or scattering from atoms not involved in the

edge; defines and subtracts the edge energy or edge offset E0,

removes the edge-jump to the above-edge region, and esti-

mates somehow an isolated-atomic absorption function above

the edge. It is often incorporated into a single routine which

makes an empirical spline fit through the data points above

the absorption edge. This enables the isolation of the XAFS

oscillations to allow structural determination. The spectrum is

then converted to a function of wavenumber k,

k ¼ 2�

h
2me E � E0ð Þ� �1=2 ð2Þ

where E0 is the ‘edge energy’.

Much activity around the 1990s emphasized the need to fit

spectra to allow structural insight, though the measures used

varied quite widely and with non-uniform results. O’Day et al.

(1994) introduced a goodness-of-fit measure but did not

incorporate uncertainties or the standard deviation of

experimental data. They stated that ‘there is currently no

accepted method for determining these errors’. Similarly,

Filipponi & Di Cicco (1995) comment that ‘any XAFS report

should be accompanied by a detailed analysis of the statistical

errors due to random noise in the raw spectra’. However,

‘general procedures to estimate errors . . . are still not well

established’.

There have been attempts to estimate uncertainty for XAFS

data. Dent et al. (1992) used a piecewise polynomial to extract

residual noise hopefully free of any structure, and equivalently

to use a Fourier filtering to remove dominant structure to

hopefully yield a noise spectrum. Of course these are recursive

methods and depend upon an ideal fit of any structure using

empirical means in order to derive the variance and noise that

would allow the structure to be determined.

Filipponi (1995) commented that the uncertainties on the

fitted XAFS parameters should be given by the spread of such

parameters resulting from variance from an ensemble of

experimental spectra. However, he comments ‘unfortunately,

only a single measurement is usually available’. He then

provides three prescriptions for evaluating the noise distri-

bution based upon an assumption of normal distribution of

errors with assumptions of magnitudes of these multivariate

distributions.

He suggests that a Metropolis Monte Carlo algorithm may

be used to sample the parameter probability distribution.

When applied to experimental data this will result in a

sequence of independent sets of parameter values, each of

which producing best fits of the experimental spectrum. The

spread then represents the statistical uncertainty. This again

is a post-facto representation and depends upon the initial

determination of uncertainty. Finally, statistical errors can also

be estimated from an assumption of perfect structural deter-

mination followed by a noise analysis of the residual, a little

like that of Dent et al. (1992).

The GNXAS software estimates the noise in energy space:

after fitting the XAFS structure, an error bar for each data

point is generated by first fitting a polynomial of degree q < M

over M data points, the residual square difference divided by

M � q forms an estimate of the noise in the data. Repeating

this along the spectrum allows for an uncertainty to be esti-

mated at each point via interpolation (Westre et al., 1995;

Filipponi & Di Cicco, 1995; Filipponi, 1995).

An alternative approach is employed by the IFEFFIT

software package (Newville, 2001), which estimates an un-

certainty of experimental X-ray absorption spectroscopy

(XAS) spectra as a function of wavenumber �ðkÞ based upon a

Fourier transform of R-space background, against theoretical

models produced via the package FEFF6 or recently FEFF8L.

IFEFFIT is also the foundation for other software used in

XAFS analysis, which often provide the benefit of a graphical

user interface (GUI), such as the ARTEMIS and ATHENA

packages (Ravel & Newville, 2005). The measure of model

agreement in IFEFFIT  2
r is calculated as

 2
r ¼

 2
k

Nindp � Nvar

; ð3Þ

 2
k ¼ 1

"2
k

Nindp

Npts

XNpts

i¼ 1

kw
i

�
�data kið Þ � �th kið Þ�2

; ð4Þ

or alternatively

 2
R ¼ 1

"2
R

Nindp

Npts

XNpts

i¼ 1

h
�data rið Þ � �th rið Þ

i2

; ð5Þ

where Nindp is an effective estimated ‘number of independent

points’ in the XAFS spectra given by the Nyquist formula,

Nindp ¼ 2�k�R

�
; ð6Þ

for a fit range of �k and �R in k- and R-space, respectively

(Stern, 1993).

"R estimates the uncertainty in the spectrum which is

calculated as the root-mean-square of the Fourier-transformed
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data in a region at high R. Parseval’s theorem allows for

conversion of this parameter into k-space with w the power of

the k-weighted spectrum (Newville et al., 1999),

"k ¼ "R

�ð2w þ 1Þ
�k k2wþ1

max � k2wþ1
min

� �
" #1=2

ð7Þ

for data point k-spacing �k. However, since most sources

of noise are not taken into account, "k and "R are under-

estimated, the error bars are too small, and  2
r is overly

large, and often 500–2000, compared with a more ideal

propagated �2
r .

In an attempt to remedy this, the fit is often re-evaluated

using a somewhat arbitrary user-defined constant "k or "R to

yield a ‘good fit  2
r ’ 1’ (Calvin, 2013). This assumes the final

fit is perfect in order to define the uncertainties, and is

therefore of limited use for hypothesis testing. The use of any

such uniform error affects the fit since experimental uncer-

tainties are non-uniform on kw�ðkÞ- or �ðrÞ-space. Without

measuring the uncertainties experimentally, this skews the fit

toward data points that actually have a large error, and away

from those with small measured uncertainty.

Meanwhile Chantler’s high-accuracy analyses of QED and

atomic spectra were extended into synchrotron research and

X-ray absorption in several key papers. Commenting that

estimates of statistical precision are critical (Chantler et al.,

1999), they made a series of (ten) considerations of key

limitations of accuracy in X-ray absorption measurements

to be addressed. This was followed by a detailed statistical

analysis of noise and variance in synchrotron X-ray

measurements and in ion chamber detection (Chantler et al.,

2000a,b). This explicitly measured numerous contributions to

variance and precision, though indeed earlier authors had

investigated some of these details for absorption. Finally this

led to the first implementation of the XERT (Chantler et al.,

2001).

Essentially, to capture the actual uncertainty obtained in the

experiment, one may begin with the variance of repeated

measurements at each energy. Many experimental collection

routines collect n multiple scans for the same sample of

interest, where n may be from 3 to 10. XERT typically takes

ten repeats for the same sample and aperture combination at

each measured energy. XERT performs additional measure-

ments to aid in the correction of experimental systematics such

as dark current, so the calculation of final uncertainties in

½�=�� becomes less trivial, with procedures outlined by Tran et

al. (2004), de Jonge et al. (2007), Chantler (2010) and Tantau et

al. (2015). The determination of experimental uncertainties

for ½�=�� is further complicated in the case of a Hybrid

experimental setup, especially for millimolar solutions, as is

true for the data for this work (Chantler et al., 2015; Islam et

al., 2016). When these uncertainties have been propagated to

give uncertainty in ½�=��, the results can be deposited or

collected ready for data deposition, and it is best that this be

done as part of the manuscript (Chantler et al., 2001, 2015;

Tran et al., 2003, 2005; de Jonge et al., 2005, 2007; Glover et al.,

2008; Islam et al., 2014, 2016; Tantau et al., 2015).

In most cases, the absence of a derived uncertainty in

½�0=��ðEÞ implies that such an uncertainty cannot be propa-

gated to an uncertainty in �ðkÞ or kn�ðkÞ. However, in recent

work (Islam et al., 2015, 2016) the uncertainty has been

propagated to �ðkÞ or kn�ðkÞ explicitly from the standard

error uncertainty �½�=��ðEÞ,

��ðEÞ ¼ �½�=��ðEÞ
½�0=��ðEÞ

: ð8Þ

However, the data are then always interpolated onto a regu-

larly spaced grid in k. This distorts experimental values, point

density, information content and experimental uncertainties

(Islam et al., 2014). The change of point spacing will skew

the fit toward a different region of the spectrum, hence any

additional time spent during the experiment in particular

energy regions to gain high detail, high point density or high

point accuracy on features of interest will effectively be lost.

These issues are general in XAFS and apply to common

packages including IFEFFIT, ARTEMIS, GNXAS and

FDMX for example.

In this work we extend the work of Islam et al. (2015) by

examining the XAS spectra taken of Ni (II) complexes

(Chantler et al., 2015). The nickel complexes bis(i-n-propyl-

salicylaldiminato) nickel(II) (i-pr), and bis(N-n-propylsalicyl-

aldiminato) nickel(II) (n-pr) (Fig. 1) are known to have local

metal environments of approximate tetrahedral and square-

planar geometries, respectively (Fox et al., 1964; Britton &

Pignolet, 1989). X-ray crystallography has been used to

examine the solid state structures, and, while small variations

in the inter-atomic distances are observed, it is confirmed that

the overall molecular geometry of the solid state structures are

maintained in solution. Hence these Ni complexes provide a

convenient platform on which to demonstrate the sensitivity

of XAFS to such differentiating characteristics. Besides being

q2xafs2017 workshop

922 Schalken and Chantler � Propagation of uncertainty in experiment J. Synchrotron Rad. (2018). 25, 920–934

Figure 1
Molecular structures of the n-pr (a) and i-pr (b) Ni coordination
complexes showing local tetrahedral and square-planar geometries
around a central Ni atom (omitting hydrogen atoms).

electronic reprint



the subject of many structural and stereochemical analyses,

salicylaldiminato Ni(II) complexes are also used as a catalyst

in the polymerization of olefins (Chan et al., 2000; Lu et al.,

2011).

Normal XAFS is considered to be able to distinguish the

coordination number to 25%, whereas in this case the differ-

ence is 0%. Further, the bond lengths and path differences are

essentially identical, making any comparison of structure or

distinction of one hypothesis (square planar) versus another

(tetrahedral) an extremely fraught problem. It is therefore

an ideal example to compare the importance of uncertainty

propagation and its consequence upon structural determina-

tion.

We will perform fits on non-interpolated spectra to evaluate

the information content and to provide more reliable para-

meter and structure determination for these challenging

coordination complexes. We will therefore:

(i) Develop a novel method and code for transforming the

raw data while maintaining point density and point accuracy,

with code in the supporting information.

(ii) Determine newly refined local structures based on non-

interpolated experimental data for both high point accuracy

data sets and high point density data sets.

(iii) Highlight the ability of XAFS as a powerful tool in

stereochemical analysis.

(iv) Demonstrate the effects standard interpolation has on

�2
r and the consequences on the interpreted structure.

(v) Present a new method of interpolation which preserves

information content.

(vi) Explain that the new approach is not only effective

across the whole range of the spectrum but also with respect

to the distribution of data point density and accuracy across

the spectrum.

2. Data for this analysis

A total of four experimental data sets are used herein, gath-

ered via the Hybrid technique, which simultaneously records

XAS fluorescence and transmission data (Chantler et al.,

2015). The Ni complexes are in a frozen solution of 15 mM,

kept at a temperature of �80 K, so as to observe and quantify

structure in the absence of thermal disorder. For each

complex, an XAS transmission spectrum is collected follow-

ing high-accuracy Hybrid methodologies (Chantler, 2010),

providing experimental data with high point accuracy (HPA)

and with the spectra corrected for experimental systematics

including energy calibration, dark current, harmonic contam-

ination and scattering using published methods (Tran et al.,

2004; Glover & Chantler, 2009; Barnea et al., 2011; Islam et al.,

2014; Tantau et al., 2015). Additionally, a spectrum is also

taken using a faster method for each complex, which trades

accuracy for higher point density, in an experiment where time

constraints did not permit both. Tabulations of the collected

spectra can be found in the supporting information of Chan-

tler et al. (2015).

3. Fitting data with original point density and point
accuracy: mu2chi

In order to use, preserve and propagate the information

content contained within the experimental uncertainties, we

introduce the mu2chi processing to convert XAS spectra from

½�=�� absorption versus energy E into � versus k (i.e. it

translates mu to chi) which avoids any interpolation and

propagates experimental measurement uncertainty. Fig. 2

shows one of the stages of the mu2chi data reduction, whereby

the background spline is removed. An example of a final

mu2chi output is shown in Fig. 3. We provide the (general)

code, manual and makefile in the supporting information.

There exist numerous methods for interpolation. Previous

work (Islam et al., 2015) utilized a cubic spline approach. After

the pre-edge and background (Fig. 2) are subtracted in the

conventional manner, a cubic fit with standard deviation

uncertainties is made through four data points, and is eval-

uated at a regular 0.05 Å�1 spaced grid, iteratively stepping

through the data. Each point on the grid then has multiple

fitted points with uncertainties, with the final value determined

by using a weighted mean, and the uncertainty being a

weighted standard deviation.

This is common, but often the interpolated value will differ

from that of the original, despite being located at the same E

or k value (Fig. 4). This then does not reflect the real data, and
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Figure 2
Quality of the data and background spline for the solvent matrix-
removed absorption spectrum for i-pr (top) and n-pr (bottom) for the
high point accuracy (HPA) data set.
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measured outliers are often omitted by the spline, incorrectly

improving the reported  2
r or �2

r .

4. eFEFFIT

The theoretical spectra are calculated following the photo-

electron wave model (Lee & Pendry, 1975; Barton & Shirley,

1985), and expressed as a sum of photoelectron scattering

paths through the XAFS equation (Zabinsky et al., 1995;

Bunker, 2010),

�thðkÞ ¼
X

j

Nj S 2
0 FjðkÞ

sin 2krj þ ’jðkÞ
� �

kr2
j

� exp �2�2
j k2

� �
exp � 2rj

�jðkÞ
� �

; ð9Þ

where Nj is the degeneracy of the path, S 2
0 corresponds to

many-body reduction effects, approximated as constant, FjðkÞ
is the backscattering amplitude function, ’jðkÞ is the phase

shift, �j is the Debye–Waller factor for thermal movements,

�j is the photoelectron mean free path, and rj = ð1 þ 	Þr0;j is

the half path length, with 	 being the relative scaling due to

thermal expansion.

We introduce a modified version of the IFEFFIT subroutine

FEFFIT, called eFEFFIT (error-FEFFIT or error-FEFF fit),

which allows for experimental uncertainties to be input and

propagated. This should be used when determining the fit, as

well as in the determination of �2
r [equations (10) and (11)],

so as to better reflect the actual data and their significance

(Smale et al., 2006),

�2
r ¼

�2

Npts � Nvar

; ð10Þ

�2 ¼
XNpts

i¼ 1

�data kið Þ � �theory kið Þ
� kið Þ

� �2

: ð11Þ

The numerator of equation (11) is the residual and is calcu-

lated as the difference between �dataðkiÞ, the ith experimental

data point, converted to a function of wavenumber k, and

the corresponding theoretical modelled value at that point

�theoryðkiÞ. �ðkiÞ is the associated propagated uncertainty. Npts

represents the number of points inside the fitting range, and

Nvars the number of fitted parameters. The authors plan to

distribute eFEFFIT code in the near future.

We recommend to not interpolate the experimental data

onto a regular grid but rather interpolate the theoretical

model onto the experimental data point array. Otherwise, it

is difficult to preserve the information content of the original

experiment during interpolation. Experimental data points

should of course be taken in at least semi-regular points in k-

space; however, this is dependent upon an exact and correct

determination of E0 prior to data collection, which is generally

implausible. Also, there can be a focus on local structure or

multiple edges which makes a more uniform scan impractical.

If the experimental point density varies greatly across the

fitting range, the fit will be dominated by regions of high point

density.

5. eFEFFIT, IFEFFIT fitting

Our starting point for structural refinements in this work will

be the structure presented in Table 4 of Islam et al. (2015). This

represents an intermediate stage of analysis whereby lengths

are refined yet the N—Ni—O angle is fixed at 90	. The model

includes the carbon rings but omits the H atoms (Fig. 1).

Fitting should be done in k-space as opposed to r-space,

otherwise interpolation to a uniform grid is still required for

fast Fourier transform, compromising further the information

contained in the measured data points. We perform the fit

without any k-weighting to avoid emphasizing different

regions of the spectrum. Graphs throughout this work,

showing a k-weighted spectrum, are scaled after the fit.

The theoretical models used are provided via FEFF8, with

parameters RPATH = 4.85, being the maximum half scat-

tering-path length, with the maximum number of legs NLEG =

6 being applied consistently throughout both this and previous

(Islam et al., 2015) work. Table 1 shows the fitted parameters

using the previously refined model, and conventionally spline-

interpolated data compared with the newly processed � versus

q2xafs2017 workshop
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Figure 3
k2-weighted mu2chi (non-interpolated) output for i-pr and n-pr from the
HPA (Hybrid) experiment.

Figure 4
A typical splining method (Islam et al., 2015) (black) compared with the
new non-interpolated method (red). Smoothing is apparent around k =
6.9. Even when interpolated and non-interpolated approaches share a
common k-value, the data point differs, e.g. at k = 6.7. The new non-
interpolating approach does not distort data, structure or uncertainty.
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k non-interpolated experimental data. The uncertainties look

similar but the fit might appear worse as �2
r is around double

for the ‘correct’ raw data rather than the interpolated form.

The interpolation smooths the data and ergo reduces apparent

noise; but it does so artificially and hence distorts the spectrum

and the apparent fit. Notice that there are small differences in

the scale of thermal parameters but that all are physical and

the nearest neighbours have a smaller thermal broadening.

The results obtained previously (Islam et al., 2015), and in

Table 1 for comparison, only implemented experimental

uncertainties � in the post-fit calculation of equation (11).

Henceforth we implement the eFEFFIT routine to utilize the

experimental uncertainties in both determining the fit and in

the calculation of �2
r . Table 2 shows the effect of utilizing

experimental uncertainties in the fit in addition to using the

raw (non-interpolated) data. This maintains the understanding

of significance testing with experimental uncertainties, and

entirely eliminates any ad hoc estimation of uncertainties. The

analysis can then test the validity of theory, model, experi-

mental uncertainty and structure. In Table 2, most parameters

only shift a small amount, so the use of

raw data and uncertainties might be

seen as not so important; however, the

quoted uncertainties are generally

halved, some shifts are equal to one

derived standard error, and the major

changes will be seen in Tables 3 and 4.

Using the full eFEFFIT and non-

interpolated data, a third step is now to

perform a refinement of the key Ni—N

and Ni—O bond lengths and N—Ni—O

inter-atomic angle. Since the approx-

imate geometries of each complex are

known, the refinements for the i-pr and

n-pr complex will be based on the

tetrahedral (TD) and square-planar

(SQ) theories, respectively.

The first step is a two-dimensional

refinement performed on the key bond

lengths, keeping the O—Ni—N angle

at 90	, followed by a one-dimensional

angular refinement scan using the new bond lengths. The new

fitted parameters are presented in Table 3. Only the nitrogen

and oxygen atomic positions are being modified while carbon

coordinates remain fixed. The �2
r surface is presented in Fig. 5

and indicates the difficulty of the minimization to clearly

distinguish the N from the O, as expected. The neighbouring

carbon atoms and those in the rest of the molecule also

undergo small changes in their positions to compensate for the

new nitrogen and oxygen locations.

The �2
r valley is quite shallow (Figs. 5 and 6). The asymmetry

of the valley in Fig. 5 indicates a relatively firm positioning of

the distance of the nitrogen and oxygen atoms from the nickel

centre, while allowing more flexibility as to the interchanging

of their relative proximity. Also indicated is a sharper defini-

tion of the oxygen location than the nitrogen. A key result of

this refinement stage is a more plausible S 2
0 . Another signifi-

cant consequence is that the bond radii have shifted signifi-

cantly from the result of the previous fit using spline-
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Table 2
Same as Table 1 with non-interpolated data but using experimental
uncertainties in determining the fit.

i-pr Ni n-pr Ni

S 2
0 1.094 � 0.025 0.788 � 0.028
	 1.0008 � 0.0032 1.0261 �0.0062
�2

N, �2
O (Å2)† 0.0010‡ 0.0010‡

�2
short (Å2)§ 0.0020‡ 0.0020‡
�2 (Å2) 0.0048 � 0.0023 0.0064 � 0.0044
�E0 (eV) 0.85 � 0.72 6.70 � 1.11

�2
r 5.905 9.576

��2
r +0.004 �0.117

† �2
N and �2

O are for the two-legged Ni—N—Ni and Ni—O—Ni paths, set to
0.001 Å2. ‡ Fixed to physical value. § �2

short is the thermal broadening parameter
for the next shortest 15 photoelectron scattering FEFF paths, set to be 0.002 Å2.

Table 3
Fitted parameters resulting from a two-dimensional (Ni—N, Ni—O) bond
length followed by one-dimensional angle refinement.

i-pr Ni n-pr Ni

Ni—N(1), Ni—N(2) (Å) 2.044 � 0.006 2.128 � 0.013
Ni—O(1), Ni—O(2) (Å) 2.007 � 0.006 1.958 � 0.012
N—Ni—O (	) 85 � 1 90.24 � 1.5

S 2
0 1.07 � 0.02 0.90 � 0.03
	 0.9965 � 0.0029 1.0074 � 0.0017
�2

N, �2
O (Å2) 0.0010† 0.0010†

�2
short (Å2) 0.0020† 0.0020†
�2 (Å2) 0.0047 � 0.0020 0.0068 � 0.0034
�E0 (eV) �0.72 � 0.64 4.00†

�2
r 4.971 9.060

��2
r 0.934 0.516

† Fixed to physical value.

Table 1
Comparison of XAFS parameters fitted conventionally, i.e. without uncertainties and a preliminary
refined structure, for Ni—N, Ni—O and N—Ni—O.

The second and third columns are results using conventional spline-interpolated data (Table 4, Islam et al.,
2015). The same structure is re-fitted with the non-interpolated data in the fourth and fifth columns.

i-pr Ni
(Islam et al., 2015)

n-pr Ni
(Islam et al., 2015)

i-pr Ni
non-interpolated

n-pr Ni
non-interpolated

Ni—N(1),(2) (Å) 2.077 2.081 2.077 2.081
Ni—O(1),(2) (Å) 1.976 1.973 1.976 1.973
N—Ni—O (	) 90 90 90 90

S 2
0 0.999 � 0.089 0.94 � 0.12 1.072 � 0.047 0.791 � 0.050
	 1.0003 � 0.004 1.012 � 0.003 1.0012 � 0.0069 1.0212 � 0.0098
�2

N, �2
O (Å2)† – – 0.0010‡ 0.0010‡

�2
short (Å2)§ – – 0.0020‡ 0.0020‡
�2 (Å2) 0.002 � 0.0015 0.003 � 0.002 0.0049 � 0.0054 0.0071 � 0.008
�E0 (eV) 0.89 � 0.87 3.7 � 1.2 0.95 � 1.43 5.95 � 1.78

�2
r 3.21 4.34 5.90 9.69

† �2
N and �2

O are for the two-legged Ni—N—Ni and Ni—O—Ni paths, set to 0.001 Å2. ‡ Fixed to physical
value. § �2

short is the thermal broadening parameter for the next shortest 15 photoelectron scattering FEFF paths, set to
be 0.002 Å2.
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interpolated data without uncertainties. Hence the importance

of the raw data with uncertainty for any quantitative analysis.

All refinements exhibit small discontinuities in �2
r as a

function of bond and angle (Fig. 6). These occur primarily

from two sources. Changes in key inter-atomic distances result

in the relative contribution of certain paths crossing the

threshold for acceptance criteria as set in FEFF. Re-defining

this parameter simply results in the discontinuities occurring

elsewhere, and its omission produces too many unique FEFF

paths for the software IFEFFIT to handle. Secondly, altering

the bond lengths causes some paths to pass into or out of the

maximum path length, also defined in FEFF. An effort to

circumvent this artifact was to use only a few three-legged

paths of any length, although a change in the position of the

minima occurs. However, the overall gradient trend exists over

subsections of the scan partitioned by the discontinuities.

Hence the location of the minimum is largely unaffected by

these small discontinuities.

The uncertainties of the refined bond lengths correspond to

the fitted percentage uncertainty given for the 	 parameter.

Uncertainties of the N—Ni—O bond angle are determined by

matching the percentage increase in �2
r to that for the bond

length uncertainties. This latter method applied to bond

lengths (Fig. 5) is in good agreement with the former more

direct method of uncertainty determination. This reflects and

is consistent with the expectation value for the standard error

uncertainty corresponding to an increase of �2 of unity.

There is no guarantee that the lowest value of �2
r in three-

dimensional parameter space has the bond length values

determined in the two-dimensional length search. Therefore

we now perform a simultaneous three-dimensional refinement

with the newly refined bond lengths and angles (Table 4).

Indeed we find that the minimum from such a rigorous search

is significantly different from that from a two-dimensional and

one-dimensional search. The earlier restricted search is

common but is not sufficient in a flat valley. Hence restricted

minimizations, while necessary, are causes for concern in

quantitative analysis. Of course we all have molecules where

the full number of independent degrees of freedom cannot be

fitted as there is insufficient information content in the spectra.

The solution is to constrain the physical independent motions

to the most significant with chemically meaningful constraints,

and to preserve the maximum information content of the data.

If needed of course, collect better data.

Having found suggested structures for each of the

complexes, we should wonder whether the structures are

simply local minima. Indeed, is the ‘square-planar’ molecule

optimized with the data set to be square planar, and is the

‘tetrahedral’ molecule optimized to be tetrahedral? Conver-

sely, might they be indistinguishable by XAFS analysis

because the paths, especially two-legged paths, are basically

identical?

In other words we need more serious hypothesis testing, by

attempting to fit the ‘square-planar’ molecule with the tetra-
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Figure 6
One-dimensional angle scan to locate minimum �2

r for the i-pr complex,
with bond lengths from Fig. 5. The minimum �2

r is estimated at 85	.

Figure 5
Refinement of i-pr bond lengths by minimizing �2

r in two-dimensional
parameter space, while the angle is held at 90	. The white spot marks the
location of the minimum, �2

r = 5.35. The white lines show uncertainties
along perpendicular axes aligned with the valley, with the magnitudes
corresponding to a percentage increase in �2

r equal to that of the
percentage uncertainty of the fitted 	 parameter (0.29%). Note the
asymmetry of the valley (see text).

Table 4
Refined structure and cross-fitting of optimized results.

Refined bond-lengths and angles for the tetrahedral (TD) and square-planar
(SQ) theory are determined using i-pr and n-pr data, respectively.

TD theory SQ theory

Ni—N (Å) 2.017 � 0.006 2.133 � 0.004
Ni—O (Å) 2.022 � 0.006 1.960 � 0.003
N—Ni—O (	) 85.12 � 2.00 88.7 � 3.0
Npts in fit range 79 57

i-pr
�2

r 4.809 10.385

S 2
0 1.079 � 0.022 1.15†
	 0.9988 � 0.0028 1.0122 � 0.0055
�2

N, �2
O (Å2) 0.0010† 0.0010†

�2
short (Å2) 0.0020† 0.0020†
�2 (Å2) 0.0050 � 0.0021 0.0081 � 0.0034
�E0 (eV) �0.42 � 0.63 4.21 � 1.08

n-pr
�2

r 10.504 8.859

S 2
0 0.756 � 0.028 0.921 � 0.031
	 1.0183 � 0.0063 1.0080 � 0.0017
�2

N, �2
O (Å2) 0.0010† 0.0010†

�2
short (Å2) 0.0020† 0.0020†
�2 (Å2) 0.0024 � 0.0037 0.0090 � 0.0034
�E0 (eV) 3.84 � 1.16 4.00†

† Fixed to physical value.
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hedral structure; and to fit the ‘tetrahedral’ molecule using the

square-planar structure. Can we distinguish the two confor-

mers by XAFS analysis? Hence after refining the structure

with the appropriate geometry, each complex is then fitted

with the alternate model. The resulting cross-fits are inferior,

confirming the correct stereochemistry for each moiety

(Table 4, Fig. 7).

The uncertainties presented throughout this manuscript

reflect the standard error (s.e.) for the parameter. This is

exactly the same meaning for any error analysis on the

assumption that all variates are normal, Gaussian-distributed

and independent. Uncertainties were determined in a manner

consistent for all parameters and the same as the basic

methodology of IFEFFIT. The uncertainties reported are

fully consistent with a detailed mapping of �2 and �2
r . In

other words, queries should be made, where there are occur-

rences of discrepancies between analyses of much more

than 3 s.e.

Table 4 shows better defined, more robust, bond lengths

when a three-dimensional parameter search is performed,

especially for the n-pr complex. Significant shifts in bond

length and angle are observed compared with the earlier tests,

with the i-pr complex gaining a higher level of symmetry. The

cross-fits (i-pr/SQ and n-pr/TD) yield larger values of �2
r

indicating that the subtle changes in geometry are correctly

modelled by the fits from the data, and that the hypothesis

testing is able to distinguish the two conformations. The

thermal parameter �2 is significantly larger and less well

defined for the square-planar structure than for the tetra-

hedral structure.

Table 5 re-presents results from Islam et al. (2015), showing

IFEFFIT-fitted values for cross-fitting of the theories. As

before, TD and SQ model structures are based on i-pr and

n-pr data, respectively.
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Figure 7
Cross-fits of k2-weighted XAFS spectra using Hybrid (HPA) non-interpolated data with refined structures from Table 4. Top row: i-pr experimental data;
bottom row: n-pr. Left column: fitted with the optimized tetrahedral structural model; right column: fitted with the optimized square-planar model. The
black line is a Hanning window and indicates the region over which the fit is performed. Inferior fits are obtained when alternate FEFF structure
geometry is applied in (b) and (c), as detailed in Table 4.

Table 5
Earlier HPA results (Islam et al., 2015).

TD theory SQ theory

Ni—N (Å) 2.077 (4) 2.081 (4)
Ni—O (Å) 1.976 (4) 1.973 (4)
N—Ni—O (	) 89.2 89.5

i-pr
�2

r 2.94 5.42

S 2
0 1.02 � 0.02 1.00 � 0.21
	 1.0012 � 0.0033 1.018 � 0.007
�2 (Å2) 0.003 � 0.002 0.0023 � 0.002
�E0 (eV) 0.62 � 0.28 4.76 � 1.64

n-pr
�2

r 4.72 3.27

S 2
0 0.93 � 0.13 0.91 � 0.02
	 1.008 � 0.005 1.007 � 0.003
�2 (Å2) 0.002 � 0.002 0.006 � 0.003
�E0 (eV) 1.95 � 1.26 2.26 � 1.14
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Ni—N and Ni—O bond lengths in the previous literature

were quite symmetric in both the tetrahedral and square-

planar theories, as opposed to our results propagating

experimental uncertainties without interpolation (Table 4).

Similar trends in the fit parameters are seen. However, the

inter-atomic angle shows a noticeable difference between the

theories in our results, which is not as evident in Table 5.

This disagreement with the results in Table 4 shows the

significant difference of structure and ergo error resulting

from the use of spline interpolation without using fitting

uncertainties, and illustrates by contrast the considerable

changes that occur when the data and uncertainties are

processed with a rigorous error-preserving method. It also

suggests that using the non-interpolated data to fit the theo-

retical model allows for a sharper differentiation between

the geometries of the individual complexes, and between

hypotheses of structure or dynamics in general.

6. High point density (HPD) XAFS analysis

The discussion above used spectra collected to emphasize high

point accuracy so that each point carried insight as to the

physical structure of the complexes. With this Hybrid method,

independent measurements are made on a range of possible

systematic contributions to the signal and each data point

should have a small uncertainty. The HPA spectra have some

large spacings in regions of k-space which may hide critical

information. Relative changes of XAFS from point-to-point

carry the most important information about structural changes

and so a sufficiently fine point spacing to reveal and represent

the frequencies corresponding to particular paths and bond

distances is important. The HPD spectra are intended to cover

all important structural frequencies with uniform stepping

in k-space, but with lower point-wise accuracy, very like the

standard continuous scans or the standard QuickXAFS scans.

The HPD data are stepped but in approximately equal steps in

k-space, and with some increased counting for higher k to

better match statistics. It is interesting and useful to see how

these choices affect the structural determination and how the

non-interpolation is affected with different spacings and

uncertainties. Therefore we repeat the last few steps in

applying the above logic to the corresponding HPD spectra.

This may also ask if the structural conclusions from the HPA

spectra are confirmed or otherwise by appropriate analysis of

HPD spectra, or by other different measurement cycles for the

same sample and structure.

A simultaneous refinement of the key inter-atomic bond

distances along with the N—Ni—O angle is therefore carried

out by performing a grid search over all three parameters and

fitting the k-range at each point.

The fits with the theoretical models are depicted in Fig. 8.

The SQ column of Tables 4 and 6 contains set values for

certain IFEFFIT XAFS-fitted parameters, namely S 2
0 and E0.

This was done to prevent the software from fitting unphysical

values, which would also have the additional negative effect of

invalidating any cross comparisons. Ideally all parameters

might be free; but their correlation and the limited informa-

tion content prevents this. Hence they should be modelled

with chemically and physically plausible restraints and

constraints to yield a maximal search through parameter space

q2xafs2017 workshop

928 Schalken and Chantler � Propagation of uncertainty in experiment J. Synchrotron Rad. (2018). 25, 920–934

Figure 8
Cross-fits of k2-weighted XAFS spectra using Hybrid (HPD) non-interpolated data with refined structures from Table 6. Analogous to Fig. 7.
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of the most significant structural parameters. The number of

fitted parameters Nvar [equation (10)] changes by one due to

the fixing of a parameter, and only changes �2
r by 1–2%. Hence

no conclusions are affected by the small change of Nvar.

Generally, there is good agreement between the results

from the HPA and HPD data sets: the SQ/n-pr fit yields a

higher degree of asymmetry in Ni—N and Ni—O bond lengths

than the previous literature (Table 5). The TD/i-pr structure

also exhibits properties similar to that of the HPA results, with

similar Ni—N and Ni—O distances. However, these were

found here to be inverted in the HPD data, with the nitrogen

closer than the oxygen. The amplitude reduction factor, S 2
0 , in

the SQ/i-pr fit has a slightly large value. The structure found

for the square-planar model possesses slightly larger bond

lengths than for the HPA data set, with a relatively higher

uncertainty on the alpha scaling parameter. Cross-fitting the

experimental data with the opposite model structures again

produces inferior fits and again demonstrates the ability of

error propagation without interpolation to distinguish

important hypothesis testing including of subtle geometric

changes.

Given the stated error on the bond lengths shown in Tables

4 and 6, it is reasonable to question whether the corresponding

resolution in r-space is sufficient to separate the peaks from

the N and O atoms. However, it must be realized that one only

needs to observe a shoulder in the peak of the radial distri-

bution. Such asymmetry implies multiple radii, and can hence

be expressed as independent locations to within the given

uncertainty. Given a FWHM resolution of approximately 0.2–

0.3 Å it is realistic to identify individual peaks of similar

magnitude with separations of 0.18, 0.17 and 0.07 Å. We do

note that the HPA data for the TD geometry have a separation

of only 0.05, and hence do not conclude which one is shorter,

and this particular data set is consistent with the distances

being identical.

It is also observed that the HPA data were not able to

distinguish a difference in key bond lengths for the tetrahedral

arrangement, whilst the HPD did. This is simply explained by

the fact that one of the data sets contained more incisive

information relating to this specific question, since the inter-

ference waves from each were better defined in the HPD. This

shows that one particular method, HPA or HPD, is not ‘better’

than the other, as it depends on what information is desired.

Ideally, one should have the high point density, with each point

having the accuracy obtained from the HPA method.

The final Table 4 (HPA) and Table 6 (HPD), while different

data sets, should be the same structure and consistent within

uncertainty: if both are evaluated to accurate levels; if the

input data uncertainties are estimated accurately; if the model

is a true representation of the structure observed (both the

theory and the imputed structure); and if the respective data

sets reflect the same structure etc. In most cases this consis-

tency is clear from the tables, though the uncertainties on any

given parameter vary as they should. One must also consider

the level of agreement between the structures resulting from

the HPA and HPD data sets for the i-pr sample. The HPA i-pr

yielded key bond lengths of 2.017 Å and 2.022 Å for the N and

O distances, respectively, with a stated uncertainty of 0.005 Å.

In general, �2
r should be unity if the model is correct (i.e.

perfect theory and exact structure). If not unity, then it is

possible that the input data uncertainties are incorrect and

underestimated by
ffiffiffiffiffi
�2

r

p
, and hence if the model is exactly

correct then the resulting uncertainties can commonly be

reported as (standard error) � ffiffiffiffiffi
�2

r

p
. Assuming the uncer-

tainties are complete as stated, the shifts from Table 4 to

Table 6 for the N and O distances are 2.017 � 1.985 = 0.032 Å

and 2.055 � 2.022 = 0.032 Å or some 4.1 s.e.; or 2.2 includingffiffiffiffiffi
�2

r

p
. Hence the results are plausible and consistent, but do

reveal shifts and sensitivities from different data sets.

7. Interpolation of experimental data with minimal
distortion of information content

We now address the question of how best to preserve the

information content of a data set if it must be interpolated

onto a linear grid, in this case in k-space. We have argued that

in general such a grid is liable to distort features and weight

spectral ranges inappropriately, and also to scale noise in the

wrong way. How then can we envisage an attempt at inter-

polation onto a regular linear grid in, for example, k-space

which will approximately preserve the information content

overall and especially of each region of the fitting range?

Knowing and having demonstrated the errors of the popular

spline interpolation used in the majority of packages, we first

look at the popular and common cubic interpolation, followed

by an approach to preserve the information content such that

the �2
r produced remains constant to within some small

margin.
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Table 6
Three-dimensional refinement of bond length and angle simultaneously
using HPD experimental data, analogous to Table 4.

TD theory SQ theory

Ni—N (Å) 1.985 � 0.005 2.115 � 0.006
Ni—O (Å) 2.055 � 0.005 1.933 � 0.006
N—Ni—O (	) 95.44 � 2.15 89.49 � 0.99
Npts in fit range 162 140

i-pr
�2

r 1.894 3.492

S 2
0 1.009 � 0.012 1.200 � 0.020
	 0.9948 � 0.0022 1.0101 � 0.0037
�2

N, �2
O (Å2) 0.0010† 0.0010†

�2
short (Å2) 0.0020† 0.0020†
�2 (Å2) 0.0075 � 0.0025 0.03†
E0 (eV) �0.52 � 0.46 1.30 � 0.02

n-pr
�2

r 2.046 1.292

S 2
0 0.95 � 0.015 1.155 � 0.014
	 0.9742 � 0.0029 0.9906 � 0.0029
�2

N, �2
O (Å2) 0.0010† 0.0010†

�2
short (Å2) 0.0020† 0.0020†
�2 (Å2) 0.0067 � 0.0030 0.0279 � 0.0047
E0 (eV) �2.85 � 0.62 �0.65 � 0.57

† Fixed to physical value.
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For a cubic interpolation, the value of �ðkintÞ can be

determined by fitting a cubic function between the points ki

and kiþ1, where ki < kint < kiþ1. The points at ki�1,kiþ1 and

ki,kiþ2 are used to estimate the gradient at points ki and kiþ1,

respectively. Then these along with the values of �ðkiÞ and

�ðkiþ1Þ are used to determine the four coefficients in the

polynomial equation

�ðkÞ ¼ ak3 þ bk2 þ ck þ d; ð12Þ

so that �ðkintÞ may be calculated. A simple linear interpolation

is performed on the first and last data intervals. In this manner

we preserve all points of the data if the k-grid point is at the

same point as the data, and we preserve the local average

derivative to yield a smooth curve of interpolation that passes

through all the data. This method is also common and useful in

preserving a smooth first derivative in the interpolation. In

other words, we do not use the standard spline which smooths

and replaces data points. In this cubic interpolation, we can

define interpolated uncertainties as

� kintð Þ ¼
"

kiþ1 � kint

kiþ1 � ki

	 
2�
� kið Þ�2

þ kint � ki

kiþ1 � ki

	 
2�
� kiþ1

� ��2

#1=2

: ð13Þ

This interpolated uncertainty yields exactly the original

uncertainty at the original data points, so in that sense this

is information-preserving. Also, this prescription has one

advantage that the predicted uncertainty is the corresponding

uncertainty for a single interpolated point.

In a given interval between raw data points, interpolation of

data will either introduce extra points or fail to place a point at

all. Whenever an interval has no interpolated point, there will

necessarily be loss of information content. Therefore, there is

an implicit expectation or requirement that a sensible inter-

polation approach should always have at least one point in any

range of the original experimental spectrum; that is, that all

interpolation approaches ought to have a grid spacing �k less

than or equal to the smallest grid spacing dke in the experi-

mental data set across the range of interest, or across the range

to be fitted.

Unless proper care is taken, the changing number of points

in the summation in equation (11) influences �2
r. Even if Npts

were to be maintained, the implementation of a regular grid

over non-uniform experimental data collection will bias the fit

toward different regions of the spectrum. Table 7 shows the

significant impact which interpolating the experimental data

typically has on the resulting �2
r .

Simply put, this interpolation routine should (always)

introduce additional points into the data set, but if for example

the two end points of a grid remain in the interpolation then

any additional point introduced with any uncertainty will

appear to add to the information content of the data incor-

rectly; that is, if the end-points correctly represent all the

information content of the data, then any additional inter-

polated point requires a weighting of zero to retain informa-

tion content.

8. Information preservation

Whilst, obviously, there are many interpolation methods

available, none of them (locally) preserve the information

content contained within, and certainly nothing of the kind

has been applied to XAFS. Current IFEFFIT and ATHENA

software changes data values and data uncertainties, and

hence are manifestly not information preserving. Our method

which we present in this section preserves variance over a

range of interpolation and parameter space, which is required

for a non-distorted fit to be obtained.

Upon examination of the formula for �2
r it is evident that in

order to preserve �2
r one must preserve the following quantity

for each interpolation interval to remove region bias,PNpts

i¼ 1 �data kið Þ � �theory kið Þ� �
=�ðkiÞ

� �2

Npts � Nvar

; ð14Þ

where the residual Res = �dataðkiÞ � �theoryðkiÞ.
We also define


 ¼ Npts � Nvar; ð15Þ
where Nvar is the number of IFEFFIT fitted variables (in this

case four, i.e. E0, 	, �2 and S 2
0 ) and Npts is the total number of

data points in the range over which IFEFFIT will eventually

perform the fit over. Therefore, this range should be entered

into the mu2chi program and re-run should the desired fitting

range change. Npts for each of our four data sets are shown in

Tables 4 and 6. The residual is calculated post-fit, and the

adjustment to the uncertainties is performed in the earlier

mu2chi process. Therefore we will now make the assumption

that the residual is constant over the interpolation interval,

and bring it out of the summation. Hence for each interval, we

now aim to satisfy

ðResÞ2


nonint

XNnonint

i¼ 1

1

�ðkiÞ
� �2

¼ ðResÞ2


int

XNint

j¼ 1

1

�ðkjÞ
� �2

; ð16Þ

where Nnonint and Nint are the number of points present inside

the given interpolation interval, for the non-interpolated and

interpolated data, respectively. For the non-interpolated data

set, the number of points in the interval is taken to be unity,

with the contribution to the �2
r from the uncertainties of the
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Table 7
Changes in �2

r resulting from interpolation of experimental data
(interpolation is performed to a k-spacing of 0.05 Å�1).

�2
r % change

i-pr HPA Non-interpolated 4.809
Cubic 5.944 +23.6%

n-pr HPA Non-interpolated 7.485
Cubic 9.331 +24.7%

i-pr HPD Non-interpolated 1.894
Cubic 2.892 +52.7%

n-pr HPD Non-interpolated 1.292
Cubic 1.664 +28.8%
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interval endpoints divided equally to the two respective

adjacent intervals. As the residual is assumed to be constant

whether interpolated or not, these cancel. Thus one requires


int


nonint

1

2

(
1

�ðkiÞ
� �2

þ 1

�ðkiþ1Þ
� �2

)
nonint

¼
(XNint

j¼ 1

1

�ðkjÞ
� �2

)
int

;

ð17Þ
whence

1

2

(
1

�ðkiÞ
� �2

þ 1

�ðkiþ1Þ
� �2

)
nonint


 � ð18Þ

is the sum of the inverse of the uncertainty squared for the

local non-interpolated interval.

In order for equation (17) to be true, we observe that the

following expression must be unity,


int


nonint

�PN
i¼ 1 1=�2

i

� � : ð19Þ

Therefore, following the error bar calculation as per the non-

information-preserving approach of equation (13), this value

is determined for each interpolation interval. Should this value

not be unity, the uncertainties within the interpolation interval

are adjusted by altering the functional ‘height’ of the curve

joining the tops of the error bars of the interpolated points.

For this purpose, we introduce a parameter �, the incre-

menting of which allows the fine adjustment of the value of the

error bars in a manner depicted in Fig. 9. � is adjusted in steps

of 0.001 to convergence, until either equation (19) is equal to

unity within some predefined level of tolerance (0.01%), or

a failsafe mechanism is triggered after 1000 iterations. This is

performed using

�ðkintÞ ¼
(

kiþ1 � kint

kiþ1 � ki

	 
1=� h
� kið Þ

i2

þ kint � ki

kiþ1 � ki

	 
1=� h
� kiþ1

� �i2

)1=2

: ð20Þ

When � equals 0.5, this expression is reverted back to that in

equation (13). The process is performed on each interpolation

interval.

Table 8 shows how the information-preservation procedure

of mu2chi works to restore �2
r to similar levels to that from

fitting with the non-interpolated data. The HPA data have

been restored to within 10% of their respective original �2
r .

Conversely, the data with a denser data point spacing, HPD,

now show a �2
r significantly less than the non-interpolated

version, which is too low and does not reflect the original

experimental data. This large discrepancy for the corrected

HPD data is explained by considering the spacing of the

interpolated grid, which in Table 8 was 0.05 Å�1. At this

spacing, many pairs of adjacent non-interpolated data points

contain no interpolated data point between them, and so a

contribution to the summation in equation (11) is lost, falsely

lowering the reported �2
r . While the cause might be considered

obvious, ensuring that this does not occur for your data is

important.

The HPD data were taken via a single monotonic energy

sweep, with data acquired at regular k-spacing based on an

estimate of E0. This then requires a small amount of inter-

polation, for which our method is perfectly applicable, with

the number of interpolated points approximately equal to the

number of points in the raw data. The � value depends on the

fractional distance from the endpoints. The monotonic energy

sweep in k-space is very similar to the continuous energy scans
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Figure 9
Curve tracing out error bar endpoints for a single interpolation interval
with changing � parameters. Top: symmetric error bars of unit magnitude
for endpoints of ki = 1 and kiþ1 = 2. Bottom: asymmetric endpoint error
bars, with � = 0.5 at kiþ1 = 2. The curve with � = 0.5 shows the result of the
standard cubic error bar interpolation [equation (13)].

Table 8
�2

r values for each complex using cubic interpolation of k-spacing
0.05 Å�1, with information-preserving correction applied.

Note that the average spacing of the non-interpolated data sets is �0.08 Å�1

for HPA and �0.04 Å�1 for HPD.

�2
r % change Average �

i-pr HPA Non-interpolated 4.809
Cubic, corrected 4.400 �8.5% 0.54

n-pr HPA Non-interpolated 7.485
Cubic, corrected 6.877 �8.1% 0.75

i-pr HPD Non-interpolated 1.894
Cubic, corrected 1.630 �13.9% 1.38

n-pr HPD Non-interpolated 1.292
Cubic, corrected 0.920 �28.8% 1.42
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often used, which may be uniform in angular velocity, energy

spacing or in principle k.

The following section examines the effect changing the

interpolation spacing has on the resulting �2
r for all four

data sets.

9. Selection of k-spacing of the interpolation grid

Until now, all interpolation has been performed to a k-grid

spacing of 0.05 Å�1. Fig. 10 illustrates the percent change in �2
r

due to interpolation compared with the respective non-inter-

polated �2
r counterpart for each data set for both HPA and

HPD data sets.

Fig. 10 illustrates that the non-corrected cubic interpolated

data have increased �2
r by around 20–40% in all cases. When

using the information-preserving uncertainties, this changes to

a difference of only approximately 10% for the HPA data, for

all interpolation grids with �k � 0.05; for �k > 0.05, �2
r

becomes lower due to missed intervals as described above.

This effect is seen again with the higher density HPD data with

�2 being restored to within 5% for �k � 0.03 before dropping

rapidly with increasing grid spacing, due to lost intervals; this

is an issue for HPD data at a lower k spacing than for HPA.

Hence the interpolation grid spacing should be chosen care-

fully for a given data set: as long as the interpolation has a

finer grid than the raw data, this approach operates reasonably

well to preserve information content.

Hence it is recommended that, should interpolation be

required, the use of our information-preservation method will

go a reasonable way to preserving the �2
r that is representative

of the actual (i.e. non-interpolated) data.

Whether the raw data are at largely non-uniform spacing, or

almost uniform with or without a fine grid, this approach is

able to be applied successfully prior to a Fourier transform to

position space. It should be emphasized that this method is not

appropriate to correct for an oversampled spectrum in k-

space, as too large a number of intervals will not possess an

interpolated point within, and hence the information content

is unable to be preserved.

10. Effects on refined structure

To illustrate how the changes in �2
r due to interpolation affect

structural refinement, Table 9 shows the bond lengths and

angles corresponding to a minimum �2
r when interpolated data

are used, and also when using the error preservation corrected

data using the above method.

In all four data sets, using the information-preserving

correction on the interpolated data produces structural

refinement closer to those found with the non-interpolated

data, demonstrating the benefits of local preservation of

information content. A particular success is that of the n-pr

HPA data, where the corrected interpolation significantly

corrected the relatively large errors in all three structural

parameters incurred using the initial cubic interpolation.

11. Conclusion

We introduce the idea of avoiding distortions of uncertainties

and fits of XAFS by avoiding uniform interpolations in k-

space from any normal non-uniform experimental data. We

provide code and theory for why this should give more

insightful results especially for hypothesis testing in compar-

ison of �2
r measures or any other goodness-of-fit measure.

Correct propagation of information content gained from

high-accuracy experimental techniques throughout the

q2xafs2017 workshop

932 Schalken and Chantler � Propagation of uncertainty in experiment J. Synchrotron Rad. (2018). 25, 920–934

Figure 10
Variations of �2

r for each data set using the information-preserving
algorithm, compared with the respective non-interpolated �2

r . As long as
the interpolated grid spacing �k is less than the minimum spacing of the
original experimental data set, the approach works very well.

Table 9
Structural refinements using interpolated data.

The HPA and HPD data sets are interpolated to a spacing of �k = 0.05 and
0.02 Å�1, respectively. The use of the information-preserving correction on the
cubic interpolated data goes some way to restore non-interpolated values of
structural parameters. That is, it is fairly effective and robust.

Non-interpolated Cubic Cubic, corrected

i-pr (HPA)
Ni—N (Å) 2.017 2.017 2.019
Ni—O (Å) 2.022 2.018 2.019
N—Ni—O (	) 85.12 86.07 86.03

n-pr (HPA)
Ni—N (Å) 2.133 2.121 2.133
Ni—O (Å) 1.960 1.939 1.947
N—Ni—O (	) 88.7 84.67 86.45

i-pr (HPD)
Ni—N (Å) 1.985 1.979 1.980
Ni—O (Å) 2.055 2.062 2.060
N—Ni—O (	) 95.44 95.02 95.03

n-pr (HPD)
Ni—N (Å) 2.115 2.116 2.114
Ni—O (Å) 1.933 1.931 1.933
N—Ni—O (	) 89.49 89.44 89.49
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analysis procedure has been demonstrated, and by doing so we

have been able to determine new information on the local

structures of Ni complexes. The high-accuracy data (HPA)

yields nickel bond lengths of 2.017 � 0.006 Å and 2.022 �
0.006 Å to the nitrogen and oxygen, respectively, and an inter-

atomic angle of 85.12 � 2.0	 for the i-pr Ni complex,

suggesting a more highly symmetrized tetrahedral arrange-

ment than prior determinations. Contrastingly, this analysis

suggests a more skewed square-planar geometry for n-pr Ni

complex, with corresponding structural parameters of 2.133 �
0.004 Å, 1.960 � 0.003 Å and 88.7 � 3.0	 for Ni—N, Ni—O

lengths and N—Ni—O angle, respectively. A second method

of data collection using a single energy sweep quite like a

continuous scan provided similar accuracies and insight and is

consistent within defined uncertainty.

We investigate the possibility of deriving uncertainties for a

uniform grid and explain some of the difficulties and chal-

lenges, including a necessary loss of information and the

possibility of missing interpolation intervals. We demonstrate

that any such method must yield non-uniform uncertainties

even for a uniform grid in k-space.

Furthermore we have illustrated the effect interpolation has

on the resulting �2
r , and the magnitude of some consequent

errors. We demonstrated that an information-preservation

algorithm in our mu2chi code, which uses an interval-wise

scaling of uncertainties to conserve the local contribution to

the final �2
r , can be quite effective with care on the inter-

polation spacing relative to the original data.

The methods presented here are important and applicable

to all data, whether non-uniform or uniform with a �E0 offset,

and to any data needing interpolation prior to a Fourier

transform. Our recommendations are that using original data

uncertainty and avoided interpolation, and ergo fitting in k-

space, is the most incisive way of hypothesis testing XAFS

data. Should transforms be required in a processing environ-

ment, it is recommended that a cubic interpolation (not a

spline) can preserve the interpolation endpoints and deriva-

tives; and that our presented local information-preserving

algorithm provides uncertainties to maintain the potential of

hypothesis testing. This fully applies to any continuous scan

with or without a �E0 requiring a reinterpolation; or to any

continuous scan attempting to have a uniform drive speed in

angle or energy; or to any step-wise scans uniform in 
, E, k

or otherwise.
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