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The performance of a single-photon-counting hybrid pixel detector has been

investigated at the Australian Synchrotron. Results are compared with the body

of accepted analytical models previously validated with other detectors.

Detector functionals are valuable for empirical calibration. It is shown that

the matching of the detector dead-time with the temporal synchrotron source

structure leads to substantial improvements in count rate and linearity of

response. Standard implementations are linear up to �0.36 MHz pixel�1; the

optimized linearity in this configuration has an extended range up to

�0.71 MHz pixel�1; these are further correctable with a transfer function to

�1.77 MHz pixel�1. This new approach has wide application both in high-

accuracy fundamental experiments and in standard crystallographic X-ray

fluorescence and other X-ray measurements. The explicit use of data variance

(rather than N 1/2 noise) and direct measures of goodness-of-fit (�r
2) are

introduced, raising issues not encountered in previous literature for any

detector, and suggesting that these inadequacies of models may apply to most

detector types. Specifically, parametrization of models with non-physical values

can lead to remarkable agreement for a range of count-rate, pulse-frequency

and temporal structure. However, especially when the dead-time is near

resonant with the temporal structure, limitations of these classical models

become apparent. Further, a lack of agreement at extreme count rates was

evident.

Keywords: hybrid pixel detector; dead-time; single-photon counting; synchrotron
fill pattern.

1. Introduction

Fluorescence X-ray absorption fine structure (XAFS), small-

angle X-ray scattering (SAXS) and protein crystallography

are important applications of synchrotron radiation that

require the position and relative intensity of X-rays to be

determined to high accuracy. Widespread use of area detectors

for high-throughput crystallography, where the weakest

reflection, the strongest reflection and the curve of the

diffraction spot profile cover many orders of magnitude of flux

and brightness, leads to this being a critical consideration.

Further, the temporal structure of recorded spots introduces

yet another time dependence to the source. A few attempts on

laboratory diffractometers have investigated the absolute

calibration and hence linearity of diffracted intensities relative

to the straight-through beam (Harada et al., 1970). This

necessitates the use of detectors with high radiation tolerance,

high dynamic range, low noise performance and a small point

spread function. Single-photon-counting pixel array detectors

(PADs) such as PILATUS have demonstrated an ability to

meet these criteria (Broennimann et al., 2006a; Sobott et al.,

2009).

Many other synchrotron applications benefit from these

advanced characteristics. Moreover, these advantages serve

well in high-flux operation, including measurements of direct-

beam or attenuated beam geometries, but also in medium or

low-flux operation, including scattering and fluorescence

detection from disordered or dilute systems. A range of critical

experiments including tests of QED (Pohl et al., 2011; Gillaspy

et al., 2010; Chantler et al., 2009a) also depend upon such

characteristics of the detector chain. Too often the best

measurements are limited by either statistics (detector effi-

ciency and count-rate) or by systematic errors including non-

linearities (Chantler & Kimpton, 2009). Hence even modest

advances in these areas can lead to dramatic new science. In

fact, in several of these fields, an increase in final accuracy by
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even a factor of two provides valuable insight into vacuum

fluctuations and higher-order Feynman diagrams (Hudson et

al., 2007).

Inherent in all photon-counting detectors is a time period

after a recorded event where the detector is rendered insen-

sitive to further events. This dead-time is due to the finite time

required to process each pulse (Johnson et al., 1966; Reed,

1972; Sharma & Walker, 1992) and if the detector response

profile is known then a simple correction for the dead-time can

be applied. Numerous analytical models assume a continuous

X-ray flux; however, many synchrotron fill patterns employed

around the world are highly structured. In such cases the

correction for dead-time, and the avoidance or reduction

thereof, becomes both more interesting and complex. Analy-

tical solutions taking into account the temporal structure of

the source have been previously presented (Cousins, 1994;

Kishimoto, 1997).

We describe below the dependence of maximum detector

count rate and linearity on the temporal structure of a storage-

ring fill pattern and detector dead-time. Results are compared

with hitherto accepted models and potential causes of devia-

tions are discussed.

2. Analytical models

Two cases of source flux have been discussed and modelled

analytically in the literature, that of uniform fill and of

bunched fill. While other cases of arbitrary complexity can be

modelled using, for example, Monte Carlo methods, in this

investigation we explored the exemplars and fundamental

ideas via suitable analytic formulations.

2.1. Uniform synchrotron fill

In the case of a uniform fill each bunch contains an almost

identical number of electrons and the photon arrival rate can

be considered uniform (i.e. Poissonian). A uniform synchro-

tron fill is an idealization, both experimentally and theoreti-

cally, and perhaps might best be modelled with a rotating-

anode source.

For a non-paralyzable detector, a signal above a simple

discriminator leads to a simple response of the counting

system to an incident X-ray rate driving the system, Nin,

Nout ¼
Nin

1þ Nin�s

; ð1Þ

where Nout is the observed rate and �s is the dead-time

including intrinsic detector and electronic components (Knoll,

1989). Consequently, when the dead-time is constant over all

events and events are random in time (Johnson et al., 1966;

Reed, 1972; Sharma & Walker, 1992), a relatively simple

correction factor can be applied to correct for non-linearity of

response.

For a paralyzable detector, each photon resets the time

during which the detector is insensitive to photons and the

observed rate is described by (Walko et al., 2011)

Nout ¼ Nin exp �Nin�sð Þ: ð2Þ

Notice that this model results in paralysis, that is, an increasing

incident count rate will result in a lower observed count rate.

The dead-time is an effective dead-time, as the signal loss may

not correspond directly to the dead-time setting on the

amplifier but rather is a function of the entire signal processing

chain (namely intrinsic and electronic contributions to dead-

time).

A third situation may be defined where the paralyzable

detector pulse is rejected if the pulses are distorted by pile-up,

for example if pulse height analysis (PHA) is performed

(Bateman, 2000). The observed count rate can then be

described by

Nout ¼ Nin exp �2Nin�sð Þ: ð3Þ

This is similar to (2) but the onset of paralysis is ‘twice as fast’

since the distorted peak does not count as one count but as

zero (it is rejected). At high count rates the ability of a

discriminator-based system to recover from pile-up and return

below threshold is decreased. The losses due to dead-time

have a much faster onset because the pulse length must remain

undistorted.

2.2. Bunched synchrotron fill

The introduction of single bunches into the beam structure

allows the response of the detection system to short bursts of

photons arriving at regular intervals to be studied (Honkimäki

& Suortti, 2007). If the interval between bunches (�b) is

greater than the intrinsic dead-time of the detector then the

observed count rate is dominated by the bunch spacing. In this

case the expected counts from a discriminator-based system,

a paralyzable detector or a pile-up rejection system can be

described, respectively, by (Bateman, 2000)

Nout ¼
1� exp �Nin�bð Þ

�b

; ð4Þ

Nout ¼ Nin exp �Nin�bð Þ: ð5Þ

This is sometimes called the ‘isolated model’, noting that the

shaping dead-time of the detector is irrelevant to the response

function. Similarly, if the bunch spacing is reduced to less than

the intrinsic dead-time of the detector, i.e. �b < �s, the expected

counts from a discriminator-based system, a paralyzable

detector and a pile-up rejection system can be described,

respectively, by

Nout ¼
1� exp �Nin�bð Þ
� �

=�b

1þ 1� exp �Nin�bð Þ
� �

n
; ð6Þ

Nout ¼ Nin exp �Nin�bðnþ 1Þ
� �

ð7Þ

and

Nout ¼ Nin exp �Nin�bð2nþ 1Þ
� �

; ð8Þ

where n is an integer defined by n = Intð�s=�bÞ and describes

the discrete nature of the source. For the case where n = 0, or

�s < �b, (6) reduces to (4) and both (7) and (8) reduce to (5).
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In addition to investigating the expected benefits to

detector linearity from the introduction of a bunched fill, we

investigate accepted analytical models as the relation between

detector dead-time and bunch spacing approaches resonance.

3. Experiment

3.1. System description

The PILATUS detector system has been described in detail

(Broennimann et al., 2006a). Briefly, each PILATUS module

comprises 94965 square pixels of side length 172 mm, creating

a continuous detector area of 83.78 mm � 33.56 mm. Each

pixel comprises the necessary electronics to process and

record individual events. Charge liberated in the sensor by

incident radiation is transferred to the readout via a micro-

scopic bump-bond (Broennimann et al., 2006b). The signal is

subsequently amplified and shaped before discrimination

against a pre-determined threshold. If the incident radiation

deposits sufficient charge, a local counter is incremented,

leading to a complete digital storage of the number of

detected events at the pixel level. External bias voltages allow

the dead-time of the preamplifier and shaper to be optimized

with respect to energy resolution or speed, dictated by the

constraints of the experiment. All data presented in this report

were acquired with PILATUS; however, results are applicable

to any lower-level discriminator-based detector system.

3.2. Australian Synchrotron

The Australian Synchrotron is a third-generation light

source (Boldeman & Einfeld, 2004) possessing the key char-

acteristics outlined in Table 1.

Investigations were restricted to fill patterns comprising

integer divisions of the revolution time, whilst providing a

temporal interval comparable with relevant detector dead-

times. Consequently, data were acquired for single-bunch

injections with separations of 180 ns and 240 ns. Reference

data were also acquired with the standard user fill pattern

shown in Fig. 1.

3.3. Measurement

Measurements were undertaken at the Australian

Synchrotron Small-Angle X-ray Scattering/Wide-Angle Scat-

tering beamline, utilizing 16 keV radiation. An EPICS

(Experimental Physics and Industrial Control System) script

was implemented to translate two sets of aluminium

attenuators across the field of view of PILATUS. The first set

comprised four and the second set 14 attenuators of increasing

thickness, resulting in 56 applicable attenuation factors and

data points for each shaping time.

Reference images were obtained in the linear region [less

than 10 kHz per pixel (Kraft et al., 2009)] of the detector for

each attenuator thereby allowing determination of each

attenuation factor. The attenuation factor was subsequently

used to determine the true incident photon rate from the

detected incident photon rate. The accuracy of this low-flux

determination is approximately 1–2%, quite adequate for

the investigation presented herein, as evident from the data

(see x4.1).

Higher-order undulator harmonics have the potential to

deposit substantial charge in the sensor and can therefore

severely affect detector counting capabilities (Barnea et al.,

2011). A multiple-foil method has been previously applied to

quantify the harmonic fraction at <0.01% (Tran et al., 2003),

which is further reduced by the use of a Si(111) double-crystal

monochromator (DCM). The low harmonic content of the

3 GeV ring, 0.1%, combined with the DCM reflections at

approximately double the critical energy, enabled the

harmonic content to be calculated as 2:7� 10�5 %. PHA data

from an individual pixel were used to confirm the absence of

any substantial harmonic contamination.

In order to avoid counter overflow whilst maintaining

adequate statistics, ten sets of 100 ms exposures of the de-

focused beam were acquired with each attenuator combina-

tion. This process was repeated for three shaping times with a

standard user fill pattern and for seven shaping times with

bunched fill patterns. All data were acquired with a 50%

incident energy threshold on PILATUS (Broennimann et al.,

2006b) and the response of a single representative pixel is

presented in x4. During all acquisitions the electron distribu-

tion within the storage ring was observed via a fill pattern

monitor (FPM) (Peake et al., 2008). Implemented on the

optical diagnostic beamline (Boland et al., 2006), the FPM

utilizes a metal–semiconductor–metal (MSM) diode to
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Table 1
Key parameters of the Australian Synchrotron storage ring.

Energy (GeV) 3.0
Circumference (m) 216
Harmonic number 360
Revolution time (ns) 720.5
Revolution frequency (MHz) 1.388
Nominal current (mA) 200

Figure 1
The standard user fill, 180 ns bunched and 240 ns bunched patterns as
measured with the fill pattern monitor.



measure incident optical flux and hence infer the stored

electron distribution.

4. Analysis

4.1. Model validation for standard or uniform fill pattern

In order to study the relationship between detector

response and beam structure, three fill patterns were investi-

gated. Validation was initially performed with the standard

user fill, which comprises 600 ns of trapezoidal fill isolated by a

120 ns gap. Data were acquired at shaping times ranging from

125 ns to 383 ns for single buckets separated by 180 ns and

240 ns. The three fill patterns as measured with the FPM are

shown in Fig. 1 and the corresponding temporal parameters

are presented in Table 2. Summarized in Table 3 are the

shaping times used in the measurements. The effective shaping

time refers to the effective pulse duration and is derived from

previous parameterizations (Kraft et al., 2009).

In probing the models in x2, the simplest model was

considered first. Results are illustrated for the 180 ns bunched

fill in Fig. 2 and fits are based on equation (1), i.e. a uniform fill

in the absence of pile-up rejection. The input uncertainty was

dominated by temporal variance due to beam drift and flux

variation and was significantly larger than
ffiffiffiffi
N
p

noise. There-

fore the variance of repeated measurements was used to

establish a reasonable and robust input weighting for analysis

and to allow the determination of significance in relation

to agreement or disagreement with the models previously

discussed. Very poor agreement was evident and the corre-

sponding �2
r values are large. The application of equation (1)

to standard user fill data, Fig. 3, also resulted in an extremely

poor fit, with reduced �2
r values for effective shaping times of

125 ns, 200 ns and 384 ns of 68, 33 and 3, respectively. Even in

the region where this model should be appropriate, it was

clearly and strongly at odds with the data. As far as we are

aware, this was the first time that modelling of advanced

detector responses and linearity had included explicit variance

measures and evaluated goodness of fit using appropriate �2
r

methods. This was crucial as visual inspection could interpret a

good fit for lower flux rates even when the model was clearly

invalid.

The uniform fill model should have been a good qualitative

match for the standard user fill, but indeed the model was non-

paralyzable and we therefore expected the paralyzable model

to match the data. Application of equation (3), i.e. uniform fill

with pulse rejection, failed to improve the fits and indicated

that this model function was inappropriate. Incidentally, the

better of these three uniform fill models was clearly equation

(2), i.e. the paralyzable detector without pulse-pileup rejec-

tion, and this most nearly approximated the detector type and

electronic operation.
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Table 2
Fill parameters for the patterns shown in Fig. 1.

User fill 180 ns bunched 240 ns bunched

Rise time 140 � 10 ns 2 � 0.5 ns 2 � 0.5 ns
Peak 0.9 � 0.1 ns 1 � 0.1 ns 1 � 0.1 ns
Fall time 140 � 10 ns 3 � 0.6 ns 3 � 0.6 ns
Period 720 � 1 ns 180 � 1 ns 240 � 1 ns

Table 3
The seven nominal shaping times investigated.

�sð1Þ �sð2Þ �sð3Þ �sð4Þ �sð5Þ �sð6Þ �sð7Þ

384 ns 260 ns 200 ns 170 ns 150 ns 130 ns 125 ns

Figure 2
Measured rate response at each shaping time for 180 ns bunched fill. The
corresponding fits are based on a �2

r minimization of equation (1), i.e.
uniform fill model without pulse rejection with fixed coefficient �s.
Subsequent offset on the y-axis for the series of nominal shaping times �s

allowed the model inadequacy to be clearly seen.

Figure 3
Measured rate response obtained from the standard user fill paralyzable
detector with no pulse rejection [equation (2)] with shaping time as a free
parameter. The largest shaping time �s was modelled well while the
smallest shaping times were clearly not modelled by the expected non-
bunched formula.



To investigate the validity of the shaping time determina-

tions, �s was allowed to vary for a fixed bunched spacing. We

emphasize that none of these models have more than two

parameters, which may be adjusted freely to provide an

empirical fit; or constrained such as for a fixed bunch spacing

on the assumption that the measurement was at least reflective

of an effective bunch spacing within its uncertainty.

For the standard fill pattern, most appropriately repre-

sented by a uniform fill model, equation (2), the paralyzable

detector without pulse-overlap rejection, the shaping times

shifted from 384 ns, 200 ns and 125 ns (predicted/measured) to

355 ns, 201 ns and 136 ns (fitted). Each of these parameters

was within one standard deviation uncertainty of the predicted

value, and therefore justify both the choice of model and its

implementation. However, while �2
r for the longest shaping

time was 3, which represented a good fit, the shorter shaping

times clearly did not follow this model. Something was

missing, either in time structure, detector electronic proces-

sing, experimental measurement or uncertainty evaluation, or

in some more fundamental understanding of the detector

response function at high counting rates. The deviations were

systematic and not random, suggesting a causal nature of the

discrepancy. It was possible to gain a better empirical fit using

a bunched model in some cases, while having two parameters

free. However, the use of such a bunched model was unphy-

sical both in model identification and in the parameter values

fitted, though it can be quite useful for an empirical under-

standing of the functional shape at high counting rates.

4.2. Model validation for 240 ns and 180 ns bunched fills:
optimized models only

Similarly, for the bunched 240 ns data, with three fills, fitting

was undertaken with both shaping time and bunch spacing as

free parameters. This resulted in a substantial improvement in

the goodness of fit. Fig. 4 represents the best fits for each

shaping time, with the bunch spacing and the shaping time as

free parameters. The largest four shaping times were best

modelled by equation (7) while the shortest three were best

modelled by equation (6). This had an unclear physical basis;

ideally all should have been best modelled by equation (7).

Furthermore, the parameter values obtained were generally

unphysical. It followed that this allowed empirical modelling

of specific experimental data but the predictive value at this

juncture was quite limited. The qualitative understanding of

the functional form of the experimental data was nonetheless

significantly improved.

�b and �s could certainly be correlated in some of the

models, yielding a flat �2
r valley and therefore a great difficulty

in determining the true minimum. This did not remove the

difficulty of the fitted parametrization. A second important

point is that the beam optics could in turn shape the bunching

further beyond the measured values; while we have no

evidence for this effect, it would be reflected in an empirical

bunching parameter which was somewhat changed from the

measured one, and not as dramatically as was observed.

Some care must be taken in interpreting the results.

Arguably the best of these fits was not a good fit, as shown by

the �2
r values. The �2

r valley was sometimes very shallow; for

example, for the longest shaping time (�s = 384 s), �b = 240 ns,

a value of �2
r = 30 was obtained from equation (7), with

parameters �b = 147 ns, �s = 237 ns, but the same model with

fixed �b = 240 ns and �s = 144 ns yielded the same �2
r , as indeed

did a model using equation (2) with the single (free) para-

meter �s = 384 ns. In some cases the model form contained

parameters which were certainly not independent.

Investigating the �b = 180 ns data revealed a similar

inconsistency (Fig. 5). No single model fitted the data and
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Figure 4
Measured rate response obtained from 240 ns bunched fill with both
bunched spacing and shaping time as free parameters and listed in the key
with the corresponding �2

r . The rows are ordered in decreasing shaping
time where the first four were best modelled by equation (7) and the last
three were best modelled by equation (6).

Figure 5
Measured rate response obtained from 180 ns bunched fill with both
bunched spacing and shaping time as free parameters. Comparison with
Fig. 2 indicates a substantial improvement in goodness of fit. The model of
equation (7) was preferred for shaping times 1, 3 and 4 while the model of
equation (6) was preferred for shaping times 2, 5, 6 and 7.



some conditions were not reasonably fitted by any model,

even with all parameters free. Visual inspection alone may

look reasonable but all options fail if the reduced �2
r is used as

the metric for goodness of fit. Therefore a new model with a

more grounded physical basis is required. The bunched fill

models, independent of whether the parameters were fixed or

free, adequately described bunched data but the choice of

models remains inconclusive. The detector was in fact paral-

yzable (see Fig. 6) so that over longer flux ranges the discre-

pancies were clear.

As a cautionary note, one should consider the nature of the

n = Intð�s=�bÞ factor in Figs. 4 and 5. In fitting, the least-squares

approach naturally expects continuous variables, so we have

modelled the functionals of equations (6) and (7) with n =

ð�s=�bÞ. The plotted (optimal) fits therefore would be largely

summarized or approximated by n = 1 for the three-bunch

settings, �sð1�3Þ, and n = 0 for �sð4�7Þ. As the shaping time

gets shorter, these models should correctly approach the n = 0

limit, and the lack of direct physical parameterization of �s

is not a proper criticism of these models. Ideally, we might

anticipate a change-over of n around �sð3Þ for the three-bunch

data and around �sð4Þ for the four-bunch data. While this was

not properly observed, this aspect of the bunched models was

qualitatively substantiated.

4.3. Model validation post turnover

For a uniform fill pattern the maximum count rate occurs at

1=�, as indicated by equation (1). Increasing the incident flux

above this value increases the likelihood of pulse pile-up and

reduces the ability of the system to return below threshold.

Surpassing the maximum count rate results in a non-mono-

tonic relationship between incident and measured counts, thus

introducing ambiguity with respect to the true incident rate. It

is therefore important that detector operation is performed

below the maximum count rate. However, for complete model

comparison, data were acquired well past the turnover point.

As seen in Fig. 6, a rate-dependent divergence between the

measured and expected counts was clearly evident. There is

evidence to suggest that the simple models enumerated in this

study, despite being the dominant models of the literature to

date, were inadequate to describe fully the operation of these

detectors at very high flux.

4.4. Linearity

The complex regions presented correspond to very high flux

rates, and indeed empirical fits were found in all cases.

However, to examine departure from linearity, a reduced

region of interest was defined for Figs. 3, 4 and 5.

Corresponding results are shown in Figs. 7, 8 and 9. Results

acquired with the standard user fill pattern indicate that

linearity was maintained at the shortest dead-time to

approximately 0.36 MHz pixel�1. This value was improved to

approximately 0.59 MHz pixel�1 by introducing a 240 ns

bunch time gap and to 0.71 MHz pixel�1 by introducing a

180 ns bunch time gap. Improvement was evident across the

majority of shaping times, the exception being a shaping time

of approximately 260 ns.

Despite the fill pattern producing many photons per bunch,

the non-continuous structure of the fill pattern allowed

detector efficiency to exceed that indicated by (1). Further,

linearity, dead-time and maximum count rate were all

improved by a bunched fill pattern. These results demonstrate

that the implementation of rate-correction factors to maintain

data accuracy outside the linear region of a detector is

contingent on an a priori knowledge of the fill pattern.

Particularly for time-structured fill patterns, any modification

to detector dead-time must be coupled to an appropriate

applied correction factor.

5. Conclusions and outlook

The rate response of the detector has been compared with

expected values from a wide range of accepted models, i.e. the

dominant models reported across the literature of electronic

detector response functions. Proper �2
r fitting has been intro-

duced and quoted for the first time, and model agreement is

specifically characterized by this measure. This has proven thatffiffiffiffi
N
p

or counting noise was not the dominant cause of variance

and hence input experimental uncertainties must be evaluated

carefully in all such experiments and investigations.

The functional linearity of the detector chain is excellent,

but is critically dependent upon dead-time. The linearity and

the maximal count rate measurable with a detector chain is

similarly critically dependent upon the matching of dead-time

(shaping time) to the storage-ring fill pattern. We have

presented all traditional models for dead-time response, and

found that empirical fits across wide ranges of flux and time

structure can yield good �2
r fits of the data.

While this is valuable for standard synchrotron beamlines

including SAXS/WAXS, XAS and XFM applications, it can

also find application in traditionally mature fields such as

protein crystallography and powder diffraction. This is espe-
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Figure 6
Detector rate response post turnover. A rate-dependent divergence
between measured and expected counts is clearly evident.



cially important as the temporal collection of diffraction spots

can combine with many orders of flux and brightness differ-

ence for central spots, the weakest reflections collected, and

even the profile tails of the weak reflections; and linearity

across these dynamic ranges is crucial to structural inter-

pretation. The advances in detector technology and insight can

also be dramatic in application to fundamental experiments

such as tests of quantum electrodynamics using EBIT where

a factor of two reduction in statistical uncertainty or an

improvement in linearity can probe new details of the universe

(Chantler et al., 2000); and in heavy ion storage rings where

temporal structure is also often complex and matching this

with the detector chain could be invaluable (Chantler et al.,

2007). Of course, recent popular developments with UV and

X-ray free-electron lasers have complex and interesting

temporal structure as well, arguing for the need for optimal

matching of detector chains (Epp et al., 2010). Importantly,

there have been recent proposals to join some of these

complex sources to investigate fundamental and applied

problems in a coordinated manner, for example by merging

a synchrotron beamline with an electron-beam ion trap

(Chantler et al., 2009b; Simon et al., 2009; Hutton et al., 2009).

The resultant spectra will include complexities from the

pulse of the fill pattern of the ring, from the usual mono-

chromator optics, but especially from the unique character-

istics of the EBIT geometry and source, and even more

specifically from the opportunities for temporal pump–probe

geometries. The development of these current ideas and their

implementation in routine and avant garde experimental

configurations will be an important objective.

Future detector fabrication featuring pixel dimensions of

75 mm square (Dinapoli et al., 2010) will afford a factor of five

reduction in flux per pixel for a given flux per mm2. The

smaller pixel size will naturally improve resolution for many

imaging applications. If the linearity and maximum count rate

limits are similarly scaled, this will be a great opportunity for

high linearity in large flux ranges.

However, poor agreement between experimental data and

theoretical models is evident, in the sense of reliable �2
r over

high-flux regimes and especially in the region where dead-time

dominates and the function ceases to be monotonic. Much

improved fits are achieved if bunched spacing and shaping

times are free parameters within some models, for a range of

conditions. Others are not reasonably fitted by any model.

This indicates at least one incorrect assumption in (all) the

modelling approaches. The model dependence is complex, and

the discriminant between model assumptions is sometimes
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Figure 7
Enlargement of Fig. 3 to reveal the large linear range of the detector.
Linearity to within approximately 2% is evident at short shaping times up
to approximately 0.36 MHz pixel�1. This becomes significantly non-linear
at very high fluxes. However, the introduction of bunched fill substantially
improves the linearity over this higher flux range.

Figure 8
Enlargement of Fig. 4 to reveal the large linear range of the detector.
Linearity to within approximately 2% is evident at short shaping times up
to approximately 0.59 MHz pixel�1.

Figure 9
Enlargement of Fig. 5 to reveal the large linear range of the detector after
optimization. Linearity to within approximately 2% is evident at short
shaping times up to approximately 0.71 MHz pixel�1.



weak, especially where the dominant literature models are

unsuccessful, and despite useful empirical fits which by eye

appear sound. Model validation post turn-over revealed a

rate-dependent divergence. We found this an exciting oppor-

tunity to understand advanced detector linearity for the first

time, for which this investigation was a major step forward. We

suspect that there will be multiple causes of the current

discrepancies including the difference between an idealized

detector response and that of a realistic and complex detector

system. A simple suggestion is to investigate Monte Carlo

methods. We have (Trueb et al., 2012), and the corresponding

implementations, while correctly implemented, provide no

additional insight nor success in this area.

Future work will involve model development to more fully

account for experimental results, especially including single

photon and Poissonian clustering with temporal fill patterns or

bunch cycling times.

A better understanding and control of this matching of

temporal structure and detector processing will yield:

(i) Optimized detector linearity (relative accuracy over a

discrete range).

(ii) Maximal count rate in high-flux systems (optimized

peak value).

(iii) A larger range of usable incoming photon rates.

(iv) Higher efficiency and lower statistical uncertainty in

many applications.

The authors would like to acknowledge the financial

support of the Cooperative Research Centre for Biomedical

Imaging Development.

References

Barnea, Z., Chantler, C. T., Glover, J. L., Grigg, M. W., Islam, M. T., de
Jonge, M. D., Rae, N. A. & Tran, C. Q. (2011). J. Appl. Cryst. 44,
281–286.

Bateman, J. E. (2000). J. Synchrotron Rad. 7, 307–312.
Boland, M. J., Walsh, A. C., LeBlanc, G. S., Tan, Y.-R. E., Dowd, R.

& Spencer, M. J. (2006). Proceedings of EPAC, Joint Accelerator
Conferences, pp. 3263–3265.

Boldeman, J. W. & Einfeld, D. (2004). Nucl. Instrum. Methods Phys.
Res. A, 521, 306–317.

Broennimann, Ch., Eikenberry, E. F., Henrich, B., Horisberger, R.,
Huelsen, G., Pohl, E., Schmitt, B., Schulze-Briese, C., Suzuki, M.,
Tomizaki, T., Toyokawa, H. & Wagner, A. (2006a). J. Synchrotron
Rad. 13, 120–130.

Broennimann, Ch., Glaus, F., Gobrecht, J., Heising, S., Horisberger,
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